Skip to main content
Log in

An accurate HMM-based similarity measure between finite sets of histograms

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Histogram analysis has nowadays gain in interest, and a lot of work yet address this task. In most of the existing approaches, histograms are manipulated as simple vectors or as statistic distributions. As a consequence, only the bin values of the histograms are mostly considered and the histograms visual shapes are generally neglected. In this paper, hidden Markov models (HMMs) are associated with finite sets of histograms to capture both: the bin values and the visual shapes of the histograms contained in these sets, regardless of their bin sizes. The similarity rate between these HMMs is then used to compare two finite sets of histograms. Experimented in several areas within and beyond machine learning, the proposed approach exhibited relevant performances which outperformed the existing work in the hierarchical classification of the databases GTZAN+ and Corel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Thomas L, Rauber A (2005) Evaluation of feature extractors and psycho-acoustic transformations for music genre classification. In: ISMIR, pp. 34–41

  2. Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vis 7(1):11–32

    Article  Google Scholar 

  3. Manjunath BS, Ohm J-R, Vasudevan VV, Yamada A (2001) Color and texture descriptors. IEEE Trans Circuits Syst Video Technol 11(6):703–715

    Article  Google Scholar 

  4. Tamura H, Mori S, Yamawaki T (1978) Textural features corresponding to visual perception. IEEE Trans Syst Man Cybern 8(6):460–473

    Article  Google Scholar 

  5. Hall G (2015) Pearson’s correlation coefficient. Url, http://www.hep.ph.ic.ac.uk/~hallg/UG_2015/Pearsons.pdf. Accessed Feb 2017

  6. Jurman G, Riccadonna S, Visintainer R, Furlanello C (2009) Canberra distance on ranked lists. In: Proceedings of advances in ranking NIPS 09 workshop, pp 22–27

  7. http://stats.stackexchange.com/questions/7400/how-to-assess-the-similarity-of-two-histograms

  8. Deselaers T, Keysers D, Ney H (2008) Features for image retrieval: an experimental comparison. Inf Retr 11(2):77–107

    Article  Google Scholar 

  9. Kapur JN, Esavan HK (1992) Entropy optimization principles and their applications. In: Entropy and energy dissipation in water resources. Springer, pp 3–20

  10. Hafner J, Sawhney HS, Equitz W, Flickner M, Niblack W (1995) Efficient color histogram indexing for quadratic form distance functions. IEEE Trans Pattern Anal Mach Intell 17(7):729–736

    Article  Google Scholar 

  11. Pele O, Werman M (2010) The quadratic-chi histogram distance family. In: European conference on computer vision. Springer, pp 749–762

  12. Ling H, Okada K (2006) Diffusion distance for histogram comparison. IEEE Comput Soc Conf Comput Vis Pattern Recognit 1:246–253

    Google Scholar 

  13. Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vis 40(2):99–121

    Article  MATH  Google Scholar 

  14. Rubner Y, Puzicha J, Tomasi C, Buhmann JM (2001) Empirical evaluation of dissimilarity measures for color and texture. Comput Vis Image Underst 84(1):25–43

    Article  MATH  Google Scholar 

  15. Kedem D, Tyree S, Sha F, Lanckriet GR, Weinberger KQ (2012) Non-linear metric learning. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems 25. Curran Associates, Inc., pp 2573–2581. http://papers.nips.cc/paper/4840-non-linear-metric-learning.pdf

  16. Iloga S, Romain O, Tchuenté M (2016) A sequential pattern mining approach to design taxonomies for hierarchical music genre recognition. Pattern Anal Appl. https://doi.org/10.1007/s10044-016-0582-7

    Google Scholar 

  17. Li F, Dai Q, Xu W, Er G (2007) Histogram mining based on Markov chain and its application to image categorization. Signal Process Image Commun 22(9):785–696

    Article  Google Scholar 

  18. Megshi K, Ishii S (2015) Expanding histogram of colors with gridding to improve tracking accuracy. In: IAPR international conference on machine vision applications (MVA). IEEE, pp 475–479

  19. Nikulin MS (2001) Hellinger distance. Encycl Math 78

  20. Cha S-H, Srihari SN (2002) On measuring the distance between histograms. Pattern Recognit 35(6):1355–1370

    Article  MATH  Google Scholar 

  21. Serratosa F, Sanfeliu A (2005) A fast distance between histograms. In: Iberoamerican congress on pattern recognition. Springer, pp. 1027–1035

  22. Ionescu RT, Popescu M (2016) Knowledge transfer between computer vision and text mining: similarity-based learning approaches. Adv Comput Vis Pattern Recognit. Springer. ISBN: 973-3-319-30365-9

  23. Luo Y, Liu T, Tao D, Xu C (2014) Decomposition-based transfer distance metric learning for image classification. IEEE Trans Image Process 23(9):3789–3801

    Article  MathSciNet  MATH  Google Scholar 

  24. Luo Y, Wen Y, Tao D (2017) Heterogeneous multitask metric learning across multiple domains. IEEE Trans Neural Netw Learn Syst 23(9):3789–3801

    Google Scholar 

  25. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286

    Article  Google Scholar 

  26. Falkhausen M, Reininger H, Wolf D (1995) Calculation of distance measures between hidden Markov models. EUROSPEECH

  27. Bahlmann C, Burkhardt H (2001) Measuring hmm similarity with the Bayes probability of error and its application to online handwriting recognition. In: Proceedings of the 6th ICDAR. IEEE, pp 406–411

  28. Chen L, Man H (2005) Fast schemes for computing similarities between Gaussian HMMs and their applications in texture image classication. EURASIP J. Appl. Signal Process 13:1984–1993

    MATH  Google Scholar 

  29. Do M (2003) Fast approximation of kullback-leibler distance for dependence trees and Hidden Markov Models. Signal Process Lett 10(4):115–118

    Article  Google Scholar 

  30. Silva J, Narayanan S (2008) Upper bound Kullback–Leibler divergence for transient Hidden Markov Models. IEEE Trans Signal Process 56(9):4176–4188

    Article  MathSciNet  MATH  Google Scholar 

  31. Lyngso RB, Pedersen CN, Nielsen H (1999) Metrics and similarity measures for Hidden Markov Models. In: International conference on intelligent systems for molecular biology, pp 178–186

  32. Zeng J, Duan J, Wu C (2010) A new distance measure for Hidden Markov Models. Expert Syst Appl 37(2):1550–1555

    Article  Google Scholar 

  33. Sahraeian SME, Yoon B-J (2011) A novel low-complexity HMM similarity measure. Signal Process Lett 18(2):87–90

    Article  Google Scholar 

  34. Iloga S, Romain O, Lotfi B, Tchuenté M (2014) Musical genres classification using Markov models. In: International conference on audio, language and image processing (ICALIP). IEEE, pp 701–705

  35. Schettini R, Ciocca G, Zuffi S (2001) A survey of methods for colour image indexing and retrieval in image databases. In: Color imaging science: exploiting digital media. Wiley, pp. 183–211

  36. https://www.math.uri.edu/~bkaskosz/flashmo/graph3d/

  37. Shao X, Xu C, Kankanhalli MS (2004) Unsupervised classification of music genre using hidden Markov model. In: IEEE international conference on multimedia and expo (ICME’04), vol 3. IEEE, pp. 2023–2026

  38. http://marsyasweb.appspot.com/download/data_sets/

  39. http://perso-etis.ensea.fr/sylvain.iloga/GTZAN+/

  40. http://www.ci.gxnu.edu.cn/cbir/Corel.zip

  41. www.ifs.tuwien.ac.at/mir/muscle/del/audio_extraction_tools.html

  42. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, Burlington

    MATH  Google Scholar 

  43. http://weka.sourceforge.net/

  44. http://meka.sourceforge.net/

  45. http://www.simotime.com/asc2ebc1.htm

  46. Huang A (2008) Similarity measures for text document clustering. In: New Zealand computer science research student conference (NZCSRSC), Christchurch, New Zealand, pp 49–56

  47. Anikeev M, Makarevich O (2006) Parallel implementation of Baum–Welch algorithm. In: Proceedings of workshop on computer science and information technologies (CSIT’06), vol 1, Karlsruhe, Germany, pp 197–200

  48. Espinosa-Manzo A, López-López A, Arias-Estrada MO (2001) Implementing hidden Markov models in a hardware architecture. In: Proceedings international meeting of computer science (ENC’01), vol II, Aguascalientes, Mexico, pp 1007–1016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Iloga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iloga, S., Romain, O. & Tchuenté, M. An accurate HMM-based similarity measure between finite sets of histograms. Pattern Anal Applic 22, 1079–1104 (2019). https://doi.org/10.1007/s10044-018-0734-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-018-0734-z

Keywords

Navigation