Skip to main content
Log in

MAP-based image denoising with structured sparsity and Gaussian scale mixture

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Image denoising is a classical problem in image processing and is known to be closely related to sparse coding. In this work, based on the key observation that the probability density function (PDF) of image patch is relevant to the maximum a posteriori estimation of sparse coefficients, using an efficient approximation of the PDF of image patch, a nonlocal image denoising method: improved simultaneous sparse coding with Gaussian scale mixture (ISSC-GSM) is proposed. The preprocessing of centering for a collection of similar patches saves expensive computation and admits biased-mean of sparse coefficients. Our formulation can be efficiently computed by alternating minimization, and both subproblems have analytical solutions using the orthogonal PCA dictionary. When applied to noise removal, the proposed ISSC-GSM has achieved highly competitive denoising performance with often higher subjective and objective qualities than other competing approaches. Experimental results have shown that our method often provides the best visual quality by effectively suppressing undesirable artifacts while maintaining the textures and edges, which is most suitable for processing images with abundant self-repeating patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322. https://doi.org/10.1109/TSP.2006.881199

    Article  MATH  Google Scholar 

  2. Andrews DF, Mallows CL (1974) Scale mixtures of normal distributions. J R Stat Soc Ser B (Methodol) 36(1):99–102

    MathSciNet  MATH  Google Scholar 

  3. Box GE, Tiao GC (2011) Bayesian inference in statistical analysis, vol 40. Wiley, New York

    MATH  Google Scholar 

  4. Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. In: IEEE computer society conference on computer vision and pattern recognition, 2005. CVPR 2005, vol 2. IEEE, pp 60–65. https://doi.org/10.1109/CVPR.2005.38

  5. Candes EJ, Wakin MB, Boyd SP (2008) Enhancing sparsity by reweighted l-1 minimization. J Fourier Anal Appl 14(5):877–905

    Article  MathSciNet  MATH  Google Scholar 

  6. Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vis 20(1):89–97

    MathSciNet  MATH  Google Scholar 

  7. Chen SS, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. SIAM Rev 43(1):129–159

    Article  MathSciNet  MATH  Google Scholar 

  8. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Color image denoising via sparse 3D collaborative filtering with grouping constraint in luminance-chrominance space. In: IEEE international conference on image processing, 2007. ICIP 2007, vol 1. IEEE, pp I–313

  9. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095. https://doi.org/10.1109/TIP.2007.901238

    Article  MathSciNet  Google Scholar 

  10. Dabov K, Foi A, Katkovnik V, Egiazarian K (2008) Image restoration by sparse 3D transform-domain collaborative filtering. In: Electronic imaging, International society for optics and photonics, p 681207

  11. Dong W, Zhang L, Shi G (2011) Centralized sparse representation for image restoration. In: 2011 IEEE international conference on computer vision (ICCV). IEEE, pp 1259–1266. https://doi.org/10.1109/ICCV.2011.6126377

  12. Dong W, Zhang L, Shi G, Wu X (2011) Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans Image Process 20(7):1838–1857. https://doi.org/10.1109/TIP.2011.2108306

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong W, Shi G, Li X (2013a) Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans Image Process 22(2):700–711. https://doi.org/10.1109/TIP.2012.2221729

    Article  MathSciNet  MATH  Google Scholar 

  14. Dong W, Zhang L, Shi G, Li X (2013b) Nonlocally centralized sparse representation for image restoration. IEEE Trans Image Process 22(4):1620–1630. https://doi.org/10.1109/TIP.2012.2235847

    Article  MathSciNet  MATH  Google Scholar 

  15. Dong W, Shi G, Ma Y, Li X (2015) Image restoration via simultaneous sparse coding: where structured sparsity meets Gaussian scale mixture. Int J Comput Vis 114(2–3):217–232. https://doi.org/10.1007/s11263-015-0808-y

    Article  MathSciNet  MATH  Google Scholar 

  16. Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41(3):613–627. https://doi.org/10.1109/18.382009

    Article  MathSciNet  MATH  Google Scholar 

  17. Donoho DL, Johnstone IM, Kerkyacharian G, Picard D (1995) Wavelet shrinkage: asymptopia? J R Stat Soc Ser B (Methodol) 57(2):301–369

    MathSciNet  MATH  Google Scholar 

  18. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image process 15(12):3736–3745. https://doi.org/10.1109/TIP.2006.881969

    Article  MathSciNet  Google Scholar 

  19. Estrada FJ, Fleet DJ, Jepson AD (2009) Stochastic image denoising. In: British Machine Vision Conference, BMVC 2009, London, UK, 7–10 September 2009. Proceedings

  20. Garrigues P, Olshausen BA (2010) Group sparse coding with a Laplacian scale mixture prior. In: Advances in neural information processing systems, pp 676–684

  21. Gasso G, Rakotomamonjy A, Canu S (2009) Recovering sparse signals with a certain family of nonconvex penalties and DC programming. IEEE Trans Signal Process 57(12):4686–4698. https://doi.org/10.1109/TSP.2009.2026004

    Article  MathSciNet  MATH  Google Scholar 

  22. Hyvärinen A, Karhunen J, Oja E (2004) Independent component analysis. Wiley, New York

    Google Scholar 

  23. Ji S, Xue Y, Carin L (2008) Bayesian compressive sensing. IEEE Trans Signal Process 56(6):2346–2356. https://doi.org/10.1109/TSP.2007.914345

    Article  MathSciNet  MATH  Google Scholar 

  24. Katkovnik V, Foi A, Egiazarian K, Astola J (2010) From local kernel to nonlocal multiple-model image denoising. Int J Comput Vis 86(1):1–32. https://doi.org/10.1007/s11263-009-0272-7

    Article  MathSciNet  Google Scholar 

  25. Lyu S, Simoncelli EP (2009) Modeling multiscale subbands of photographic images with fields of Gaussian scale mixtures. IEEE Trans Pattern Anal Mach Intell 31(4):693–706. https://doi.org/10.1109/TPAMI.2008.107

    Article  Google Scholar 

  26. Mairal J, Elad M, Sapiro G (2008) Sparse representation for color image restoration. IEEE Trans Image Process 17(1):53–69. https://doi.org/10.1109/TIP.2007.911828

    Article  MathSciNet  MATH  Google Scholar 

  27. Mairal J, Sapiro G, Elad M (2008) Learning multiscale sparse representations for image and video restoration. Multiscale Model Simul 7(1):214–241. https://doi.org/10.1137/070697653

    Article  MathSciNet  MATH  Google Scholar 

  28. Mairal J, Bach F, Ponce J, Sapiro G (2009) Online dictionary learning for sparse coding. In: Proceedings of the 26th annual international conference on machine learning. ACM, pp 689–696. https://doi.org/10.1145/1553374.1553463

  29. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A (2009) Non-local sparse models for image restoration. In: 2009 IEEE 12th international conference on computer vision. IEEE, pp 2272–2279. https://doi.org/10.1109/ICCV.2009.5459452

  30. Martin D, Fowlkes C, Tal D, Malik J (2002) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Eighth IEEE international conference on computer vision, 2001. ICCV 2001. Proceedings, vol 2, pp 416–423

  31. Ramirez I, Sapiro G (2012) Universal regularizers for robust sparse coding and modeling. IEEE Trans Image Process 21(9):3850–3864. https://doi.org/10.1109/TIP.2012.2197006

    Article  MathSciNet  MATH  Google Scholar 

  32. Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1(Jun):211–244

    MathSciNet  MATH  Google Scholar 

  33. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Sixth international conference on computer vision. IEEE, pp 839–846

  34. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  35. Wipf DP, Rao BD (2004) Sparse Bayesian learning for basis selection. IEEE Trans Signal Process 52(8):2153–2164. https://doi.org/10.1109/TSP.2004.831016

    Article  MathSciNet  MATH  Google Scholar 

  36. Wipf DP, Rao BD, Nagarajan S (2011) Latent variable Bayesian models for promoting sparsity. IEEE Trans Inf Theory 57(9):6236–6255. https://doi.org/10.1109/TIT.2011.2162174

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873. https://doi.org/10.1109/TIP.2010.2050625

    Article  MathSciNet  MATH  Google Scholar 

  38. Yu G, Sapiro G, Mallat S (2012) Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity. IEEE Trans Image Process 21(5):2481–2499. https://doi.org/10.1109/TIP.2011.2176743

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhou M, Chen H, Ren L, Sapiro G, Carin L, Paisley JW (2009) Non-parametric Bayesian dictionary learning for sparse image representations. In: Advances in neural information processing systems, pp 2295–2303

  40. Zoran D, Weiss Y (2011) From learning models of natural image patches to whole image restoration. In: 2011 IEEE international conference on computer vision (ICCV). IEEE, pp 479–486. https://doi.org/10.1109/ICCV.2011.6126278

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant number 61573014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimin Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Zhang, Y. MAP-based image denoising with structured sparsity and Gaussian scale mixture. Pattern Anal Applic 22, 965–977 (2019). https://doi.org/10.1007/s10044-018-0692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-018-0692-5

Keywords

Navigation