Skip to main content
Log in

Tied factors analysis for high-dimensional image feature extraction and recognition application

  • Industrial and Commercial Application
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Feature extraction from images, which are typical of high dimensionality, is crucial to the recognition performance. To explore the discriminative information while depressing the intra-class variations due to variable illumination and view conditions, we propose a factor analysis framework for separate “content” from “style,” identifying a familiar face seen under unfamiliar viewing conditions, classifying familiar poses presented in an unfamiliar face, estimating age across unfamiliar faces. The framework applies efficient algorithms derived from objective factor separating functions and space mapping functions, which can produce sufficiently expressive representations of feature extraction and dimensionality reduction. We report promising results on three different tasks in the high-dimensional image perceptual domains: face identification with two benchmark face databases, facial pose classification with a benchmark facial pose database, extrapolation of age to unseen facial image. Experimental results show that our approach produced higher classification performance when compared to classical LDA, WLDA, LPP, MFA, and DLA algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang Q, Zhang L, Yang Y et al (2014) Local patch discriminative metric learning for hyperspectral image feature extraction. IEEE Geosci Remote Sens Lett 11(3):612–616

    Article  Google Scholar 

  2. Martinez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233

    Article  Google Scholar 

  3. Ye J, Janardan R, Park C, Park H (2004) An optimization criterion for generalized discriminant analysis on undersampled problems. IEEE Trans Pattern Anal Mach Intell 26(8):982–994

    Article  Google Scholar 

  4. He X, Yan S, Hu Y, Niyogi P, Zhang H (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340

    Article  Google Scholar 

  5. Tenenbaum J, Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(22):2319–2323

    Article  Google Scholar 

  6. Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(22):2323–2326

    Article  Google Scholar 

  7. Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Process Syst 14:585–591

    Google Scholar 

  8. Muller K, Mika S, Riitsch G, Tsuda K, Scho lkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12:181–201

    Article  Google Scholar 

  9. Yan S, Xu D, Yang Q, Zhang L, Tang X, Zhang H (2005) Discriminant analysis with tensor representation. Proc Int Conf Comput Vis Pattern Recognit 1:526–532

    Google Scholar 

  10. Yang J, Zhang D, Frangi A, Yang J (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137

    Article  Google Scholar 

  11. Ye J (2004) Generalized low rank approximations of matrices. In: Proceedings of the international conference on machine learning, pp. 895–902

  12. Ye J, Janardan R, Li Q (2005) Two-dimensional linear discriminant analysis. Adv Neural Inf Process Syst 17:1569–1576

    Google Scholar 

  13. Popa V, Nurminen J, Gabbouj M (2011) A study of bilinear models in voice conversion. J Signal Inf Process 2(2):125–139

    Google Scholar 

  14. Tan H, Cheng B, Feng J (2011) Tensor recovery via multi-linear augmented lagrange multiplier method, sixth international conference on image and graphics (ICIG), pp 141–146

  15. Li Y, Gao Y, Erdogan H (2000) Weighted pairwise scatter to improve linear discriminant analysis. In: Proceedings of the ICSLP, pp 608–611

  16. Loog M, Duin RPW, Haeb-Umbach R (2001) Multiclass linear dimension reduction by weighted pairwise Fisher criteria. TPAMI 23(7):762–766

    Article  Google Scholar 

  17. H-S Lee, Chen B (2008) Linear discriminant feature extraction using weighted classification confusion information. In: INTERSPEECH 2008, 9th annual conference of the international speech communication association, Brisbane, Australia. Sept 2254–2257

  18. Yan S, Xu D, Zhang B (2007) Graph embedding and extensions: a general framework for dimensionality reduction. TPAMI 29(1):40–51

    Article  Google Scholar 

  19. Zhang T, Tao D, Li X (2009) Patch alignment for dimensionality reduction. IEEE Trans Knowl Data Eng 21(9):1299–1313

    Article  Google Scholar 

  20. Bianco S (2015) Can linear data projection improve hyperspectral face recognition. Lect Notes Comput Sci 9016:161–170

    Article  Google Scholar 

  21. Murphy-Chutorian E, Trivedi M (2009) Head pose estimation in computer vision: a survey. IEEE Trans Pattern Anal Mach Intell 31(4):607–626

    Article  Google Scholar 

  22. Han H, Otto C, Jain AK (2013) Age estimation from face images: human vs. machine performance. In: International conference on biometrics, Madrid, Spain

  23. AT & T Laboratories Cambridge. The ORL Database of Faces [OL]. http://www.cam-orl.Co.uk/facedatabase.html

  24. Belhumeur PN, Hespanha JP, Kriengman DJ (1997) Eigenfaces versus fisherfaces: recognition using class specific linear projection. TPAMI 19(7):711–720

    Article  Google Scholar 

  25. The CMU PIE database [OL] (2013) http://www.ri.cmu.edu/projects/project_418.html

  26. The FGNET Aging Database[OL] (2013) http://www.prima.inrialpes.fr/FGnet

  27. Liu SF, Lin Y (2005) Grey information: theory and practical applications. Springer, London

    Google Scholar 

Download references

Acknowledgments

We want to thank the helpful comments and suggestions from Cheng-Lin Liu and Roger Lambert III. This work is supported partially by China Postdoctoral Science Foundation (No. 2015M582355), the doctor Scientific research start project from Hubei University of Science and Technology (No. BK1418), the National Natural Science Foundation of China (NSFC) (No. 61271256), the Team Plans Program of the Outstanding Young Science and Technology Innovation of Colleges and Universities in Hubei Province (No. T201513), and the Program of the Natural Science Foundation of Hubei Province (No. 2015CFB452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, H., Chen, Y., Dai, W. et al. Tied factors analysis for high-dimensional image feature extraction and recognition application. Pattern Anal Applic 20, 587–600 (2017). https://doi.org/10.1007/s10044-016-0572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-016-0572-9

Keywords

Navigation