Skip to main content
Log in

Beyond social graphs: mining patterns underlying social interactions

  • Industrial and Commercial Application
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This work aims at discovering and extracting relevant patterns underlying social interactions. To do so, some knowledge extracted from Facebook, a social networking site, is formalised by means of an Extended Social Graph, a data structure which goes beyond the original concept of a social graph by also incorporating information on interests. When the Extended Social Graph is built, state-of-the-art techniques are applied over it in order to discover communities. Once these social communities are found, statistical techniques will look for relevant patterns common to each of those, in such a way that each cluster of users is characterised by a set of common features. The resulting knowledge will be used to develop and evaluate a social recommender system, which aims at suggesting users in a social network with possible friends or interests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Friendship recommendations will only be provided when \(\alpha \ne 0\) %, as otherwise we cannot check the suggested friendship against the set of removed information.

References

  1. Agarwal G, Kempe D (2008) Modularity-maximizing graph communities via mathematical programming. Eur Phys J B 66(3):409–418

    Article  MathSciNet  MATH  Google Scholar 

  2. Al Hasan M, Zaki MJ (2011) A survey of link prediction in social networks. In: Social network data analytics. Springer, US, pp 243–275

    Chapter  Google Scholar 

  3. Altshuler Y, Pan W, Pentland A (2012) Trends prediction using social diffusion models. In: Social Computing, Behavioral—Cultural Modeling and Prediction (LNCS 7227). Springer, Berlin, Heidelberg, pp 97–104

    Chapter  Google Scholar 

  4. Aris A, Shneiderman B (2007) Designing semantic substrates for visual network exploration. Inf Vis 6(4):281–300

    Article  Google Scholar 

  5. Asur S, Huberman BA (2010) Predicting the future with social media. In: Proceedings of the (2010) IEEE/WIC/ACM International conference on Web Intelligence and Intelligent Agent Technology, pp 492–499

  6. Atzmueller M, Doerfel S, Mitzlaff F (2016) Description-oriented community detection using exhaustive subgroup discovery. Inf Sci 329:965–984

    Article  Google Scholar 

  7. Aynaud T, Guillaume JL (2010) Static community detection algorithms for evolving networks. In: Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, pp 513–519

  8. Baluja S, Seth R, Sivakumar D, Jing Y, Yagnik J, Kumar S, Ravichandran D, Aly M (2008) Video suggestions and discovery for youtube: taking random walks through the view graph. In: Proceedings of the 17th International Conference on World Wide Web, pp 895–904

  9. Bannister MJ, Eppstein D, Goodrich MT, Trott L (2012) Force-directed graph drawing using social gravity and scaling. In: Proceedings of the 20th International Conference on Graph Drawing, pp 414–425

  10. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: Proceedings of the International AAAI Conference on Weblogs and Social Media, pp 361–362

  11. Basu C, Hirsh H, Cohen W (1998) Recommendation as classification: using social and content-based information in recommendation. In: Proceedings of the 15th National Conference on Artificial Intelligence, AAAI Press, pp 714–720

  12. Baughman AK, Graham BM, Hamilton RA, O’Conell BM (2013) Social network-based recommendation. United States Patent Application Publication. Pub. No.: US8386329B1. International Business Machines Corporation, Armonk, NY, USA

  13. Bhagat S, Cormode G, Muthukrishnan S (2011) Node classification in social networks. In: Social network data analytics. Springer, US, pp 115–148

    Chapter  Google Scholar 

  14. Biswas A, Biswas B (2015) Investigating community structure in perspective of ego network. Expert Syst Appl 42(20):6913–6934

    Article  Google Scholar 

  15. Bisgin H, Agarwal N, Xu X (2010) Investigating homophily in online social networks. In: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, pp 533–536

  16. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 10

  17. Bobadilla J, Ortega F, Hernando A, Gutiérrez A (2013) Recommender systems survey. Knowl Based Syst 46:109–132

    Article  Google Scholar 

  18. Buyukkokten O, Smith AD (2013) Automatic generation and recommendation of communities in a social network. United States Patent Application Publication. Pub. No.: US7680770B1. Google Inc, Mountain View, CA, USA

  19. Chen G, Wang Y, Wei J (2013) A new multiobjective evolutionary algorithm for community detection in dynamic complex networks. Math Problems Eng 2013

  20. Chen Z, Xie Z, Zhang Q (2015) Community detection based on local topological information and its application in power grid. Neurocomputing 170:384–392

    Article  Google Scholar 

  21. Clementi A, Ianni MD, Gambosi G, Natale E, Silvestri R (2015) Distributed community detection in dynamic graphs. Theor Comput Sci 584:19–41

    Article  MathSciNet  MATH  Google Scholar 

  22. Coca AE, Zhao L (2016) Musical rhythmic pattern extraction using relevance of communities in networks. Inf Sci 329:819–848

    Article  Google Scholar 

  23. Combe D, Largeron C, Egyed-Zsigmond E, Géry M (2010) A comparative study of social network analysis tools. In: International Workshop on Web Intelligence and Virtual Enterprises, vol. 2

  24. Correa CD, Ma KL (2011) Visualizing social networks. In: Social network data analytics. Springer, US, pp 307–326

    Chapter  Google Scholar 

  25. De Meo P, Ferrara E, Fiumara G, Provetti A (2011) Generalized Louvain method for community detection in large networks. In: Proceedings of the 11th International Conference on Intelligent System Design and Applications, pp 88–93

  26. Deng W, Patil R, Najjar L, Shi Y, Chen Z (2014) Incorporating community detection and clustering techniques into collaborative filtering model. Procedia Comput Sci 31:66–74

    Article  Google Scholar 

  27. Facebook Inc: Graph API (2013). https://developers.facebook.com/docs/reference/api/. Last updated 4 April 2013

  28. Feld SL (1991) Why your friends have more friends than you do. Am J Sociol 96(6):1464–1477

    Article  Google Scholar 

  29. Feng H, Tian J, Wang HJ, Li M (2015) Personalized recommendations based on time-weighted overlapping community detection. Inf Manag 52(7):789–800

    Article  Google Scholar 

  30. Ferreira LN, Zhao L (2016) Time series clustering via community detection in networks. Inf Sci 326:227–242

    Article  MathSciNet  Google Scholar 

  31. Fortunato S (2010) Community detection in graphs. Phys Rep 486:75–174

    Article  MathSciNet  Google Scholar 

  32. Geyer W, Dugan C, Millen DR, Muller M, Freyne J (2008) Recommending topics for self-descriptions in online user profiles. In: Proceedings of the 2nd ACM Conference on Recommender System, pp 59–66

  33. Gilinsky J (2011) How technology, social media is making life hard for dictators. PBS, February 28, 2011. http://www.pbs.org/mediashift/2011/02/how-technology-social-media-is-making-life-hard-for-dictators059. Accessed 9 Oct 2014

  34. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99(12):7821–7826

    Article  MathSciNet  MATH  Google Scholar 

  35. Golberg D, Nichols D, Oki BM, Terry D (1992) Using collaborative filtering to weave an information tapestry. Commun ACM 35(12):61–70

    Article  Google Scholar 

  36. Gosling SD, Augustine AA, Vazire S, Holtzman N, Gaddis S (2011) Manifestations of personality in online social networks: self-reported facebook-related behaviors and observable profile information. Cyberpsychol Behav Soc Netw 14(9):483–488

    Article  Google Scholar 

  37. Grund TU (2014) Why your friends are more important and special than you think. Sociol Sci 1:128–140

    Article  Google Scholar 

  38. Guy I, Zwedling N, Carmel D, Ronen I, Uziel E, Yogev S, Ofek-Koifman S (2009) Personalized recommendation of social software items based on social relations. In: Proceedings of the 3rd ACM Conference on Recommender System, pp 53–60

  39. Hamdaqa M, Tahvildari L, LaChapelle N, Campbell B (2014) Cultural scene detection using reverse Louvain optimization. Sci Comput Program 95(1):44–72

    Article  Google Scholar 

  40. Henry N, Fekete J, McGuffin MJ (2007) NodeTrix: a hybrid visualization of social networks. IEEE Trans Vis Comput Graph 13(6):1302–1309

    Article  Google Scholar 

  41. Huang J, Cheng XQ, Guo J, Shen HW, Yang K (2010) Social recommendation with interpersonal influence. In: Proceedings of the 19th European Conference on Artificial Intelligence, pp 601–606

  42. Hughes BD (1995) Random walks and random environments: random walks, vol 1. Clarendon Press, Oxford

    MATH  Google Scholar 

  43. Jamali M, Ester M (2010) A matrix factorization technique with trust propagation for recommendation in social networks. In: Proceedings of the 4th ACM Conference on Recommender System, pp 135–142

  44. Kajdanowicz T, Indyk W (2013) Parallel processing of large graphs. Future Gener Comput Syst 32:324–337

    Article  Google Scholar 

  45. Kanawati R (2015) Empirical evaluation of applying ensemble methods to ego-centred community identification in complex networks. Neurocomputing 150(B):417–427

  46. Kang H, Getoor L, Singh L (2007) Visual analysis of dynamic group membership in temporal social networks. ACM SIGKDD Explor Newsl 9(2):13–21

    Article  Google Scholar 

  47. Kazienko P, Kajdanowicz T (2012) Label-dependent node classification in the network. Neurocomputing 75(1):199–209

    Article  Google Scholar 

  48. King I, Lyu MR, Ma H (2010) Introduction to social recommendation. In: Proceedings of the 19th International Conference on World Wide Web, pp 1355–1356

  49. Knijnenburg B, Bostandjiev S, O’Donovan J, Kobsa A (2012) Inspectability and control in social recommenders. In: Proceedings of the 6th ACM Conference on Recommender System, pp 43–50

  50. Kobourov SG (2013) Force-directed drawing algorithms. In: Handbook of graph drawing and visualization. CRC Press, pp 383–408

  51. Konstas I (2009) On social networks and collaborative filtering. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 195–202

  52. Kundu S, Pal SK (2015) Fuzzy-rough community in social networks. Pattern Recognit Lett 67(2):145–152

    Article  Google Scholar 

  53. Lancichinetti A, Fortunato S (2009) Benchmarks for testing community detection on directed and weighted graphs with overlapping communities. Phys Rev E 80(1)

  54. Lancichinetti A, Fortunato S (2009) Community detection algorithms: a comparative analysis. Phys Rev E 80(5)

  55. Leskovec J, Lang KJ, Mahoney M (2010) Empirical comparison of algorithms for network community detection. In: Proceedings of the 19th International Conference on World Wide Web, pp 631–640

  56. Li K, Pang Y (2014) A unified community detection algorithm in complex network. Neurocomputing 130:36–43

    Article  Google Scholar 

  57. Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inf Sci Technol 58(7):1019–1031

    Article  Google Scholar 

  58. Lu H, Halappanavar M, Kalyanaraman A (2015) Parallel heuristics for scalable community detection. Parallel Comput 47:19–37

    Article  MathSciNet  Google Scholar 

  59. McGuffin MJ (2012) Simple algorithms for network visualization: a tutorial. Tsinghua Sci Technol 17(4):1–16

    Article  Google Scholar 

  60. McPherson M, Smith-Lovin L, Cook JM (2001) Birds of a feather: homophily in social networks. Annu Rev Sociol 27:415–444

    Article  Google Scholar 

  61. Mislove A, Viswanath B, Gummadi PK, Druschel P (2009) You are who you know: inferring user profiles in online social networks. In: Proceedings of the 3rd International Conference on Web Search and Web Data Mining, pp 251–260

  62. Moody J, McFarland D, Bender-deMoll S (2005) Dynamic network visualization. Am J Sociol 110(4):1206–1241

    Article  Google Scholar 

  63. Moon S, Lee JG, Kang M, Choy M, Woo Lee J (2015) Parallel community detection on large graphs with MapReduce and GraphChi. Data Knowl Eng (in press)

  64. Moradi P, Rostami M (2015) Integration of graph clustering with ant colony optimization for feature selection. Knowl Based Syst 84:144–161

    Article  Google Scholar 

  65. Muggleton S (1991) Inductive logic programming. New Gener Comput 8(4):295–318

    Article  MATH  Google Scholar 

  66. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103(23):8577–8582

    Article  Google Scholar 

  67. Nie F, Xiang S, Liu Y, Zhang C (2010) A general graph-based semi-supervised learning with novel class discovery. Neural Comput Appl 19(4):549–555

    Article  Google Scholar 

  68. Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435:814–818

    Article  Google Scholar 

  69. Parthasarathy S, Ruan Y, Satuluri V (2011) Community discovery in social networks: applications, methods and emerging trends. In: Social network data analytics. Springer, US, pp 79–113

    Chapter  Google Scholar 

  70. Peters S, Jacob Y, Denoyer L, Gallinari P (2012) Iterative multi-label multi-relational classification algorithm for complex social networks. Soc Netw Anal Min 2(1):17–29

    Article  Google Scholar 

  71. Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E 74(1)

  72. Reihanian A, Minaei-Bidgoli B, Alizadeh H (2015) Topic-oriented community detection of rating-based social networks. J King Saud Univ Comput Inf Sci (in press)

  73. Resnick P, Varian HR (1997) Recommender systems. Commun ACM 40(3):56–58

    Article  Google Scholar 

  74. Ricci F, Rokach L, Shapira B, Kantor PB (2011) Recommender systems handbook. Springer, US

  75. Romero DM, Tan C, Ugander J (2013) On the interplay between social and topical structure. In: Proceedings of the 7th AAAI International Conference on Weblogs and Social Media, pp 516–525

  76. Roth M, Ben-David A, Deutscher D, Flysher G, Horn I, Leichtberg A, Leiser N, Matias Y, Merom R (2008) Suggesting friends using the implicit social graph. In: Proceedings of the 16th ACM SIGKK International Conference on Knowledge Discovery and Data Mining, pp 233–242

  77. Schafer JB, Konstan J, Riedi J (1999) Recommender systems in e-Commerce. In: Proceedings of the 1st ACM Conference on Electronic Commerce, pp 158–166

  78. Shen Z, Ma KL, Eliassi-Rad T (2006) Visual analysis of large heterogeneous social networks by semantic and structural abstraction. IEEE Trans Vis Comput Graph 12(6):1427–1439

    Article  Google Scholar 

  79. Su X, Khoshgoftaar TM (2009) A survey of collaborative filtering techniques. Adv Artif Intell 2009

  80. Sun A, Datta A, Lim EP, Chang K (2011) Visualizing and querying semantic social networks. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 1271–1272

  81. Szummer M, Jaakkola T (2002) Partially labeled classification with Markov random walks. Adv Neural Inf Process Syst 14:945–952

    Google Scholar 

  82. Tan F, Li L, Zhang Z, Guo Y (2015) A multi-attribute probabilistic matrix factorization model for personalized recommendation. Pattern Anal Appl (in press)

  83. Tarbush B, Teytelboym A (2012) Homophily in online social networks. In: Internet and network economics (LNCS 7695). Springer, Berlin, Heidelberg, pp 512–518

    Chapter  Google Scholar 

  84. Ugander J, Backstrom L, Marlow C, Kleinberg J (2012) Structural diversity in social contagion. Proc Natl Acad Sci USA 109(16):5962–5966

    Article  Google Scholar 

  85. Ugander J, Karrer B, Backstrom L, Marlow C (2011) The anatomy of the facebook social graph. Comput Res Repos arXiv:ABS/1111.4503

  86. Vernal MS, Zhu W, Leszczenski JM, Elman JE, Morin DB, Cheever CD, Sanghvi R, Zhuo J, Shepard LJ (2010) Leveraging a social graph from a social network for social context in other systems. United States Patent Application Publication. Pub. No.: US2010/0132049. Facebook, Mountain View, CA 94041, USA

  87. Ware C, Bobrow R (2005) Supporting visual queries on medium-sized node-link diagrams. Inf Vis 4(1):49–58

    Article  Google Scholar 

  88. Xiang R, Neville J, Rogati M (2010) Modeling relationship strength in online social networks. In: Proceedings of the 19th International Conference on World Wide Web, pp 981–990

  89. Xin Y, Yang J, Xie ZQ, Zhang JP (2015) An overlapping sematic community detection algorithm based on the ARTs multiple sampling models. Expert Syst Appl 42(7):3420–3432

    Article  Google Scholar 

  90. Xu Y, Xu H, Zhang D (2015) A novel disjoint community detection algorithm for social networks based on backbone degree and expansion. Expert Syst Appl 42(21):8349–8360

    Article  Google Scholar 

  91. Zhang H, Chen X, Li J, Zhou B (2016) Fuzzy community detection via modularity guided membership-degree propagation. Pattern Recognit Lett 70:66–72

    Article  Google Scholar 

  92. Zhao S, Zhou MX, Yuan Q, Zhang X, Zheng W, Fu R (2010) Who is talking about what: social map-based recommendation for content-centric social websites. In: Proceedings of the 4th ACM Conference on Recommender System, pp 143–150

  93. Zhou L, Lü K, Yang P, Wang L, Kong B (2015) An approach for overlapping and hierarchical community detection in social networks based on coalition formation game theory. Expert Syst Appl 42(24):9634–9646

    Article  Google Scholar 

  94. Ziegler CN (2013) On recommender systems. In: Social web artifacts for boosting recommenders, Springer International Publishing, pp 11–20

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Baldominos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldominos, A., Calle, J. & Cuadra, D. Beyond social graphs: mining patterns underlying social interactions. Pattern Anal Applic 20, 269–285 (2017). https://doi.org/10.1007/s10044-016-0550-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-016-0550-2

Keywords

Navigation