Skip to main content
Log in

On size invariance texture image retrieval by fuzzy logic classifier and scattering statistical features

  • Short Paper
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

The texture image retrieval plays an important role in everyday life of people. In this paper, a new and efficient image features extraction approach based on scattering transform is proposed for size invariance texture image retrieval. The proposed approach obtains texture information in different directions and scales. And, analysis of size invariance texture image retrieval using fuzzy logic classifier and scattering statistical features is carried out. The different size samples of texture image are randomly generated from the original texture images. Also, average success rate of each size samples is obtained, respectively. The study shows that statistical features can achieve good performance from the sixth feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abe S (2001) Pattern classification: neuro-fuzzy methods and their comparison. Springer, London

    Book  MATH  Google Scholar 

  2. And\(\acute{e}\)n J, Mallat S (2014) Deep scattering spectrum. IEEE Trans Signal Process 62(16):4114–4128

  3. And\(\acute{e}\)n J, Mallat S (2011) Multiscale scattering for audio classification. In: 12th international society for music information retrieval conference (ISMIR 2011), Florida, pp 657–662

  4. Arivazhagan S, Ganesan L (2003) Texture classification using wavelet transform. Pattern Recognit Lett 24(9–10):1513–1521

    Article  MATH  Google Scholar 

  5. Brodatz P (1996) Textures: a photographic album for artists and designers. Dover, New York

    Google Scholar 

  6. Bovik AC, Clark M, Gieslei W (1990) Multichannel texture analysis using localised spatial filters. IEEE Trans Pattern Anal Mach Intell 12(1):55–73

    Article  Google Scholar 

  7. Bruna J, Mallat S (2013) Invariant scattering convolution networks. IEEE Trans Pattern Anal Mach 35(8):1872–1886

    Article  Google Scholar 

  8. Bouvrie J, Rosasco L, Poggio T (2009) On invariance in hierarchical models, NIPS

  9. Chi Z, Yan H, Pham T (1996) Fuzzy algorithms: with applications to image processing and pattern recognition. World Scientific, Singapore

    MATH  Google Scholar 

  10. Duda RO, Hard PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, Hoboken

    Google Scholar 

  11. G\(\acute{o}\)lez-Bernal P, Pedrero AG, Prieto-Castro CI, Valenncia D, Lobato R, Alonso JE (2008) A feature extraction method based on morphological operators for automatic classification of leukocytes. In: 2008 Seventh Mexican International Conference on Artificial Intelligence (MICAI), pp. 227–232, Atizapn de Zaragoza, Mexico

  12. Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67(5):786–804

    Article  Google Scholar 

  13. Kaplan LM (1999) Extended fractal analysis for texture classification and segmentation. IEEE Trans Image Process 8(11):1572–1585

    Article  Google Scholar 

  14. Kokare M, Biswas PK, Chatterji BN (2006) Rotation-invariant texture image retrieval using rotation complex wavelet filters. IEEE Trans Syst Man Cybern Part B Cybern 36(6):1273–1282

    Article  Google Scholar 

  15. Kokare M, Chatterji BN, Biswas PK (2002) A survey on current content based image retrieval methods. IETE J Res 48(3/4):261–271

    Article  Google Scholar 

  16. Lu C, Chung P, Chen C (1997) Unsupervised texture segmentation via wavelet transform. Pattern Recognit 30(5):729–742

    Article  Google Scholar 

  17. LeCun Y, Kavukvuoglu K, Farabet C (2010) Convolutional networks and applications in vision. In: 2010 International Symposium on Circuits and Systems, pp 153–156, Paris

  18. Lam W-K, Li C-K (1997) Rotated texture classification by improve iterative morphological decomposition. IEEE Proc Visual Image Signal Process 144(3):171–179

    Article  Google Scholar 

  19. Mallat S (2012) Group invariant scattering. Commun Pure Appl Math 65(10):1331–1398

    Article  MathSciNet  MATH  Google Scholar 

  20. Mallat S (2010) Recursive interferometric representation. In: 2010 European Signal Processing Conference, pp. 716–720, Aalborg (2010)

  21. Mukane Shailendrakumar M, Bormane Dattatraya S, Gengaje Sachin R (2011) On size invariance texture retrieval using fuzzy logic and wavelet based features. Inter J Appl Eng Res 6(6):1297–1310

    Google Scholar 

  22. Materka A, Strzelecki M (1998) Textture analysis methods—a review. Technical University of Lodz, Institute of Electronics, COST B11 report. Brussels, Belgium

  23. Pentland A (1984) Fractal-based description of natural scenes. IEEE Trans Pattern Anal Mach Intell 6(6):661–674

    Article  Google Scholar 

  24. Pawar PM, Ganguli R (2003) Genetic fuzzy system for damage detection in beams and helicopter rotor blades. Comput Methods Appl Mech Eng 192(16–18):2031–2057

    Article  MATH  Google Scholar 

  25. Rosenfeld A, Weszka J (1980) Picture recognition in digital pattern recognition. In: Fu K (ed.) Springer, New York pp 135–166

  26. Raghu PP, Yegnanarayana B (1996) Segmentation of Gabor filtered textures using deterministic relaxation. IEEE Trans Image Process 5(12):1625–1636

    Article  Google Scholar 

  27. Sklanskky J (1978) Image segmentation and feature extraction. IEEE Trans Syst Man Cybern 8(4):237–247

    Article  Google Scholar 

  28. Sugeno M (1985) An introductory survey of fuzzy control. Inform Sci 36(1–2):59–83

    Article  MathSciNet  MATH  Google Scholar 

  29. Strzelecki M, Materka A (1997) Markov and random fields as models of textured biomedical images, In: Proceedings of the 20th National Conference Circuit Theory and Electronic Networks KTOiUE’ 97, pp 493–498, Kolobrzeg

  30. Schaefer G, Zavisek M, Nakashima T (2009) Thermography based breast cancer analysis using statistical features and fuzzy classification. J Pattern Recognit 42(6):1131–1137

    Google Scholar 

  31. Weazka J, Dyer C, Rosenfeld A (1976) A comparative study of texture measures for terrain classification. IEEE Trans Syst Man Cyb 6(4):269–285

    Article  Google Scholar 

  32. Yokoi S, Toriwaki J (1986) Adjacency relations among figures on a digitized image plane with applications to texture analysis, In: Proceedings of the First International Symposium for Science on Form, pp. 431–439, Japan

  33. Zhang J, Zhang B, Jiang X (2000) Analysis of feature extraction methods based on wavelet transform. Signal Process 16(32):157–162

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, J. & Zhao, M. On size invariance texture image retrieval by fuzzy logic classifier and scattering statistical features. Pattern Anal Applic 19, 509–516 (2016). https://doi.org/10.1007/s10044-015-0509-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-015-0509-8

Keywords

Navigation