Skip to main content

Advertisement

Log in

Recognizing human interactions by genetic algorithm-based random forest spatio-temporal correlation

  • Industrial and Commercial Application
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Recognizing human interactions is a more challenging task than recognizing single person activities and has attracted much attention of the computer vision community. This paper proposes an innovative and effective way to recognize human interactions, which incorporates the advantages of both global motion context (MC) feature and spatio-temporal (S-T) correlation of local spatio-temporal interest point feature. The MC feature is used to train a random forest where genetic algorithm (GA) is applied to the training phase to achieve a good compromise between reliability and efficiency. Besides, we propose S-T correlation-based match, where MC’s structure and Needleman–Wunsch algorithm are used to calculate the spatial and temporal correlation score of two videos, respectively. Experiments on the UT-Interaction dataset show that our approaches outperform other prevalent machine learning methods, and that the combination of GA search-based random forest and S-T correlation achieves the state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Poppe R (2010) A survey on vision-based human action recognition. Image Vis Comput (IVC) 28(6):976–990

    Article  Google Scholar 

  2. Turaga P, Chellappa R, Subrahmanian VS et al (2008) Machine recognition of human activities: a survey. IEEE Trans Circuits Syst Video Technol 18(11):1473–1488

    Article  Google Scholar 

  3. Blank M, Gorelick L, Shechtman E, et al. (2005) Actions as space-time shapes. In: Proc. of International Conference on Computer Vision (ICCV), pp 1395–1402

  4. Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local SVM approach. In: Proc. of International Conference on Pattern Recognition (ICPR), pp 32–36

  5. Lin Z, Jiang Z, Davis LS (2009) Recognizing actions by shape-motion prototype trees. In: Proc. of International Conference on Computer Vision (ICCV), pp 444–451

  6. Laptev I, Marszalek M, Schmid C, et al. (2008) Learning realistic human actions from movies. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1–8

  7. Liu J, Luo J, Shah M (2009) Recognizing realistic actions from videos “in the wild”. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1996–2003

  8. Ryoo MS, Aggarwal JK (2009) Spatio-temporal relationship match: video structure comparison for recognition of complex human activities. In: Proc. of International Conference on Computer Vision (ICCV), pp 1593–1600

  9. Cohen I, Li H (2003) Inference of human postures by classification of 3D human body shape. In: IEEE International Workshop on Analysis and Modeling of Faces and Gestures (AMFG), pp 74–81

  10. Bloom V, Argyriou V, Makris D (2013) Dynamic feature selection for online action recognition. In: International Workshop on Human Behavior Understanding (HBU), pp 64–76

  11. Schwarz LA, Mateus D, Navab N (2012) Recognizing multiple human activities and tracking full-body pose in unconstrained environments. Pattern Recognit 45(1):11–23

    Article  Google Scholar 

  12. Kellokumpu V, Pietikäinen M, Heikkilä J (2005) Human activity recognition using sequences of postures. In: IAPR Conf. of Machine Vision Applications, pp 570–573

  13. Junejo IN, Junejo KN, Aghbari ZA (2013) Silhouette-based human action recognition using SAX-shapes. Vis Comput 30(3):259–269

    Article  Google Scholar 

  14. Grundmann M, Meier F, Essa I (2008) 3D shape context and distance transform for action recognition. In: Proc. of International Conference on Pattern Recognition (ICPR), pp 1–4

  15. Razzaghi P, Palhang M, Gheissari N (2013) A new invariant descriptor for action recognition based on spherical harmonics. Pattern Anal Appl (PAAA) 16(4):507–518

    Article  MathSciNet  Google Scholar 

  16. Laptev I (2005) On space-time interest points. Int J Comput Vis (IJCV) 64(2–3):107–123

    Article  Google Scholar 

  17. Dollar P, Rabaud V, Cottrell G, et al. (2005) Behavior recognition via sparse spatio-temporal features. In: IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp 65–72

  18. Wang H, Klaser A, Schmid C et al (2013) Dense trajectories and motion boundary descriptors for action recognition. Int J Comput Vis (IJCV) 103(1):60–79

    Article  MathSciNet  Google Scholar 

  19. Yu J, Liu D, Tao D et al (2012) On combining multiple features for cartoon character retrieval and clip synthesis. IEEE Trans Syst Man Cybern 42(5):1413–1427

    Article  Google Scholar 

  20. Yu J, Wang M, Tao D (2012) Semisupervised multiview distance metric learning for cartoon synthesis. IEEE Trans Image Process (TIP) 21(11):4636–4648

    Article  MathSciNet  Google Scholar 

  21. Liu W, Tao D, Cheng J et al (2014) Multiview Hessian discriminative sparse coding for image annotation. Comput Vis Image Underst (CVIU) 118:50–60

    Article  Google Scholar 

  22. Liu W, Tao D (2013) Multiview Hessian regularization for image annotation. IEEE Trans Image Process (TIP) 22(7):2676–2687

    Article  MathSciNet  Google Scholar 

  23. Tao D, Tang X, Li X et al (2006) Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans Pattern Anal Mach Intell (TPAMI) 28(7):1088–1099

    Article  Google Scholar 

  24. Li N, Cheng X, Zhang S, et al. (2013) Recognizing human actions by BP-Adaboost algorithm under a hierarchical recognition framework. In: Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 3407–3411

  25. Li N, Cheng X, Zhang S et al (2014) Realistic human action recognition by Fast HOG3D and self-organization feature map. Mach Vis Appl (MVA) 25(7):1793–1812

    Article  Google Scholar 

  26. Quattoni A, Wang S (2007) Hidden conditional random fields. IEEE Trans Pattern Anal Mach Intell (TPAMI) 29(10):1848–1853

    Article  Google Scholar 

  27. Mikolajczyk K, Uemura H (2008) Action recognition with motion-appearance vocabulary forest. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1–8

  28. Ubalde S, Goussies NA, Mejail ME (2013) Efficient descriptor tree growing for fast action recognition. Pattern Recognit Lett 36(1):213–220

    MATH  Google Scholar 

  29. Ahmad M, Lee SW (2006) HMM-based human action recognition using multiview image sequences. In: Proc. of International Conference on Pattern Recognition (ICPR), pp 263–266

  30. Niebles JC, Wang H, Li FF (2008) Unsupervised learning of human action categories using spatial-temporal words. Int J Comput Vis (IJCV) 79(3):299–318

    Article  Google Scholar 

  31. Zhang Z, Hu Y, Chan S, et al. (2008) Motion context: a new representation for human action recognition. In: Proc. of European Conference on Computer Vision (ECCV), pp 817–829

  32. Ogale AS, Karapurkar A, Aloimonos Y (2007) View-invariant modeling and recognition of human actions using grammars. In: Workshops on Dynamical Vision, pp 115–126

  33. Wang L, Wang Y, Gao W (2011) Mining layered grammar rules for action recognition. Int J Comput Vis (IJCV) 93(2):162–182

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang Z, Tao D (2012) Slow feature analysis for human action recognition. IEEE Trans Pattern Anal Mach Intell (TPAMI) 34(3):436–450

    Article  MathSciNet  Google Scholar 

  35. Zhang X, Yang Y, Jiao LC et al (2013) Manifold-constrained coding and sparse representation for human action recognition. Pattern Recognit 46(7):1819–1831

    Article  Google Scholar 

  36. Zhang T, Tao D, Li X et al (2009) Patch alignment for dimensionality reduction. IEEE Trans Knowl Data Eng 21(9):1299–1313

    Article  Google Scholar 

  37. Yu J, Liu D, Tao D et al (2011) Complex object correspondence construction in two-dimensional animation. IEEE Trans Image Process (TIP) 20(11):3257–3269

    Article  MathSciNet  Google Scholar 

  38. Tao D, Li X, Wu X et al (2007) General tensor discriminant analysis and Gabor features for gait recognition. IEEE Trans Pattern Anal Mach Intell (TPAMI) 29(10):1700–1715

    Article  Google Scholar 

  39. Tao D, Li X, Wu X et al (2009) Geometric mean for subspace selection. IEEE Trans Pattern Anal Mach Intell (TPAMI) 31(2):260–274

    Article  Google Scholar 

  40. Liu W, Liu H, Tao D et al (2015) Multiview Hessian regularized logistic regression for action recognition. Signal Process 110:101–107

    Article  MathSciNet  Google Scholar 

  41. Guan N, Tao D, Luo Z et al (2011) Non-negative patch alignment framework. IEEE Trans Neural Netw (TNN) 22(8):1218–1230

    Article  Google Scholar 

  42. Guan N, Tao D, Luo Z, et al. (2012) MahNMF: Manhattan non-negative matrix factorization. pp 1–43 (preprint) arXiv:1207.3438

  43. Guan N, Tao D, Luo Z et al (2012) NeNMF: an optimal gradient method for nonnegative matrix factorization. IEEE Trans Signal Process (TSP) 60(6):2882–2898

    Article  MathSciNet  Google Scholar 

  44. Shabani AH, Clausi DA, Zelek JS (2012) Evaluation of local spatio-temporal salient feature detectors for human action recognition. In: Proc. of Computer and Robot Vision (CRV), pp 468–475

  45. Bregonzio M, Gong S, Xiang T (2009) Recognising action as clouds of space-time interest points. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1948–1955

  46. Thurau C, Hlavac V (2008) Pose primitive based human action recognition in videos or still images. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1–8

  47. Klaser A, Marszałek M, Schmid C (2008) A spatio-temporal descriptor based on 3D-gradients. In: Proc. of British Machine Vision Conference (BMVC), pp 995–1004

  48. Scovanner P, Ali S, Shah M (2007) A 3-dimensional SIFT descriptor and its application to action recognition. In: Proc. of ACM International Conference on Multimedia, pp 357–360

  49. Everts I, van Gemert JC, Gevers T (2013) Evaluation of color STIPs for human action recognition. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2850–2857

  50. Reddy KK, Liu J, Shah M (2009) Incremental action recognition using feature-tree. In: Proc. of International Conference on Computer Vision (ICCV), pp 1010–1017

  51. Belongie S, Malik J, Puzicha J (2001) Shape context: a new descriptor for shape matching and object recognition. In: Proc. Advances in Neural Information Processing Systems, pp 831–837

  52. Matikainen P, Hebert M, Sukthankar R (2010) Representing pairwise spatial and temporal relations for action recognition. In: Proc. of European Conference on Computer Vision (ECCV), pp 508–521

  53. Zhang Y, Liu X, Chang MC, et al. (2012) Spatio-temporal phrases for activity recognition. In: Proc. of European Conference on Computer Vision (ECCV), pp 707–721

  54. Yu J, Tao D, Wang M (2012) Adaptive hypergraph learning and its application in image classification. IEEE Trans Image Process (TIP) 21(7):3262–3272

    Article  MathSciNet  Google Scholar 

  55. Yao A, Gall J, Van Gool L (2010) A Hough transform-based voting framework for action recognition. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2061–2068

  56. Waltisberg D, Yao A, Gall J, et al. (2010) Variations of a Hough-voting action recognition system. In: ICPR Contests on Recognizing Patterns in Signals, Speech, Images and Videos, pp 306–312

  57. Liu C, Kong Y, Wu X, et al. (2012) Action recognition with discriminative mid-level features. In: Proc. of International Conference on Pattern Recognition (ICPR), pp 3366–3369

  58. Moosmann F, Triggs B, Jurie F (2007) Fast discriminative visual codebooks using randomized clustering forests. In: Proc. of Advances in Neural Information Processing Systems, pp 985–992

  59. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48(3):443–453

    Article  Google Scholar 

  60. Ryoo MS, Chen CC, Aggarwal JK, et al. (2010) An overview of contest on semantic description of human activities (SDHA) 2010. In: ICPR Contests on Recognizing Patterns in Signals, Speech, Images and Videos, pp 270–285

  61. Quinlan JR (1986) Introduction of decision trees. Mach Learn 1(1):81–106

    Google Scholar 

  62. Quinlan JR (1993) C4.5: Programs for machine learning, Morgan Kaufmann

  63. Mitchell TM (1997) Machine learning. McGraw-Hill Education Co. (Asia), New York

    MATH  Google Scholar 

  64. Theodoridis S, Koutroumbas K (2010) Pattern Recognit. Elsevier Pte Ltd, Singapore

    MATH  Google Scholar 

  65. Zhang X, Cui J, Tian L, et al. (2011) Local spatio-temporal feature based voting framework for complex human activity detection and localization. In: Proc. of Asian Conference on Pattern Recognition (ACPR), pp 12–16

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (NSFC) under Grant Nos. 60971098 and 61302152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nijun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Cheng, X., Guo, H. et al. Recognizing human interactions by genetic algorithm-based random forest spatio-temporal correlation. Pattern Anal Applic 19, 267–282 (2016). https://doi.org/10.1007/s10044-015-0463-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-015-0463-5

Keywords

Navigation