Skip to main content
Log in

Improved clustering criterion for image clustering with artificial bee colony algorithm

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, a new objective function is proposed for image clustering and is applied with the artificial bee colony (ABC) algorithm, the particle swarm optimization algorithm and the genetic algorithm. The performance of the proposed objective function is tested on seven benchmark images by comparing it with the three well-known objective functions in the literature and the K-means algorithm in terms of separateness and compactness which are the main criterions of the clustering problem. Moreover, the Davies–Bouldin Index and the XB Index are also employed to compare the quality of the proposed objective function with the other objective functions. The simulated results show that the ABC-based image clustering method with the improved objective function obtains well-distinguished clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Samet R, Hancer E (2012) A new approach to the reconstruction of contour lines extracted from topographic maps. J Vis Commun Image Represent 23(4):642–647. doi:10.1016/j.jvcir.2012.02.005

    Article  Google Scholar 

  2. Hancer E, Samet R (2011) Advanced contour reconnection in scanned topographic maps. In: 2011 5th International conference on application of information and communication technologies (AICT), 12–14 Oct. 2011, pp 1–5

  3. Jafar OAM, Sivakumar R (2010) Ant-based clustering algorithms: a brief survey. Int J Comput Theory Eng 2:787–796

    Article  Google Scholar 

  4. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

    Article  Google Scholar 

  5. Carpineto C, Romano G (1996) A lattice conceptual clustering system and its application to browsing retrieval. Mach Learn 24(2):95–122. doi:10.1023/a:1018050230279

    Google Scholar 

  6. Leung Y, Zhang J-S, Xu Z-B (2000) Clustering by scale-space filtering. IEEE Trans Pattern Anal Mach Intell 22(12):1396–1410. doi:10.1109/34.895974

    Article  Google Scholar 

  7. Manning CD, Schutze H (1999) Foundations of statistical natural language processing

  8. Frigui H, Krishnapuram R (1999) A robust competitive clustering algorithm with applications in computer vision. IEEE Trans Pattern Anal Mach Intell 21(5):450–465

    Article  Google Scholar 

  9. Omran MGH, Salman A, Engelbrecht AP (2006) Dynamic clustering using particle swarm optimization with application in image segmentation. Pattern Anal Appl 8(4):332–344. doi:10.1007/s10044-005-0015-5

    Article  MathSciNet  Google Scholar 

  10. Hamerly G, Elkan C (2002) Alternatives to the K-means algorithm that find better clusterings. In: Proceedings of the ACM conference on information and knowledge management (CIKM-2002)

  11. Omran M (2004) Particle swarm optimization methods for pattern recognition and image processing. University of Pretoria, Environment and Information Technology

  12. Jain AK, Duin RPW, Mao JC (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Article  Google Scholar 

  13. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: 5th Berkeley Symp. Math. Stat. Probability

  14. Karaboga D, Ozturk C (2011) A novel clustering approach: artificial bee colony (ABC) algorithm. Appl Soft Comput 11(1):652–657

    Article  Google Scholar 

  15. Forgy EW (1965) Cluster analysis of multivariate data: efficiency versus interpretability of classification. Biometrics 21(3):768–769

    Google Scholar 

  16. Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3:32–57

    Article  MathSciNet  MATH  Google Scholar 

  17. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York

    Book  MATH  Google Scholar 

  18. Liew AWC, Leung SH, Lau WH (2000) Fuzzy image clustering incorporating spatial continuity. IEE Proc Vis Image Signal Process 147(2):185–192

    Article  Google Scholar 

  19. Forouzanfar M, Forghani N, Teshnehlab M (2010) Parameter optimization of improved fuzzy c-means clustering algorithm for brain MR image segmentation. Eng Appl Artif Intell 23(2):160–168. doi:10.1016/j.engappai.2009.10.002

    Article  Google Scholar 

  20. Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1(2):98–110

    Article  Google Scholar 

  21. Pham DL (2001) Spatial models for fuzzy clustering. Comput Vis Image Underst 84(2):285–297. doi:10.1006/cviu 2001.0951

    Article  MATH  Google Scholar 

  22. Jian Y, Miin-Shen Y (2007) A generalized fuzzy clustering regularization model with optimality tests and model complexity analysis. IEEE Trans Fuzzy Syst 15(5):904–915

    Article  Google Scholar 

  23. Frackiewicz M, Palus H (2008) Clustering with K-harmonic means applied to colour image quantization. In: IEEE International Symposium on signal processing and information technology, 2008. ISSPIT 2008, 16–19 Dec. 2008, pp 52–57

  24. Li Q, Mitianoudis N, Stathaki T (2007) Spatial kernel K-harmonic means clustering for multi-spectral image segmentation. IET Image Proc 1(2):156–167

    Article  Google Scholar 

  25. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international joint conference on neural networks, Australia

  26. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Paper presented at the 6th international symposium on micro machine and human science

  27. Bharne PK, Gulhane VS, Yewale SK (2011) Data clustering algorithms based on swarm intelligence. In: 3rd International conference on electronics computer technology (ICECT), 8–10 April 2011, pp 407–411

  28. Salman A, Omran M, Engelbrecht A (2002) Image classification using particle swarm optimization. In: Paper presented at the conference on simulated evolution and learning, Singapore

  29. Omran M, Engelbrecht A, Salman A (2005) Particle swarm optimization method for image clustering. Int J Pattern Recognit Artif Intell 19(3):297–322

    Article  Google Scholar 

  30. Omran M, Engelbrecht A, Salman A (2006) Particle swarm optimization for pattern recognition and image processing. In: Abraham A (ed) CGaVR Swarm intelligence and data mining, SCI series studies in computational intelligence, vol 1. Springer, Berlin

  31. Omran MGH, Engelbrecht AP (2006) Self-adaptive differential evolution methods for unsupervised image classification. In: 2006 IEEE conference on cybernetics and intelligent systems, vols 1, 2. IEEE, New York

  32. Dorigo M (1992) Optimization Learning And Natural Algorithms. PHD Thesis, Politecnico Di Milano, Italy

  33. Piatrik T, Izquierdo E (2008) An application of ant colony optimization to image clustering. In: Paper presented at the proc. K-Space Jamboree Workshop

  34. Das S, Abraham A, Konar A (2008) Automatic clustering using an improved differential evolution algorithm. IEEE Trans Syst Man Cybern Part A Syst Hum 38(1):218–237. doi:10.1109/tsmca.2007.909595

    Article  Google Scholar 

  35. Das S, Abraham A, Konar A (2009) Metaheuristic clustering. In: Studies in computational intelligence, vol 178. Springer, Berlin

  36. Das S, Konar A (2009) Automatic image pixel clustering with an improved differential evolution. Appl Soft Comput 9(1):226–236. doi:10.1016/j.asoc.2007.12.008

    Article  Google Scholar 

  37. Sarkar S, Das S (2013) Multi-level image thresholding based on two-dimensional histogram and maximum tsallis entropy—a differential evolution approach. IEEE Trans Image Process 99:1–1. doi:10.1109/tip.2013.2277832

    Google Scholar 

  38. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department

  39. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3)

  40. Karaboga D, Ozturk C (2009) Neural networks training by artificial bee colony algorithm on pattern classification. Neural Netw World 19(3):279–292

    Google Scholar 

  41. Ma M, Liang J, Guo M, Fan Y, Yin Y (2011) SAR image segmentation based on artificial bee colony algorithm. Appl Soft Comput 11(8):5205–5214. doi:10.1016/j.asoc.2011.05.039

    Article  Google Scholar 

  42. Ozturk C, Karaboga D, Gorkemli B (2011) Probabilistic dynamic deployment of wireless sensor networks by artificial bee colony algorithm. Sensors 11(6):6056–6065

    Article  Google Scholar 

  43. Karaboga D, Okdem S, Ozturk C (2012) Cluster based wireless sensor network routing using artificial bee colony algorithm. Wirel Netw 18(7):847–860

    Google Scholar 

  44. Sag T, Cunkas M (2012) Development of image segmentation techniques using swarm intelligence (ABC-based clustering algorithm for image segmentation). In: International Conference on Computing and Information Technology Al-Madinah Al-Munawwarah, Saudi Arabia, pp 95–100

  45. Manda K, Satapathy SC, Rao KR (2012) Artificial bee colony based image clustering. In: International conference on information systems design and intelligent applications (INDIA 2012), Visakhapatnam, India, 2012, pp 29–37

  46. Hancer E, Ozturk C, Karaboga D (2012) Artificial bee colony based image clustering. In: IEEE congress on evolutionary computation, CEC 2012, Brisbane, Australia

  47. Karaboga D (2010) Artificial bee colony algorithm. Scholarpedia:6915. doi:10.4249/scholarpedia.6915

  48. Omran M, Al-Sharhan S (2007) Barebones particle swarm methods for unsupervised image classification. In: IEEE congress on evolutionary computation 2007 CEC 2007, 25–28 Sept. 2007, pp 3247–3252

  49. Chou CH, Su MC, Lai E (2004) A new cluster validity measure and its application to image compression. Pattern Anal Appl 7(2):205–220. doi:10.1007/s10044-004-0218-1

    Article  MathSciNet  Google Scholar 

  50. Man To W, Xiangjian H, Wei-Chang Y (2011) Image clustering using particle swarm optimization. In: IEEE congress on evolutionary computation (CEC'2011), 5–8 June 2011, pp 262–268

  51. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell PAMI-1(2):224-227. doi:10.1109/tpami.1979.4766909

  52. Zhao Q, Xu M, Fränti P (2009) Sum-of-squares based cluster validity index and significance analysis adaptive and natural computing algorithms. In: Kolehmainen M, Toivanen P, Beliczynski B (eds). Lecture notes in computer science, vol 5495. Springer, Berlin, pp 313–322. doi:10.1007/978-3-642-04921-7_32

  53. Calinski T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3:1–27

    Article  MathSciNet  MATH  Google Scholar 

  54. Ball G, Hubert L (1965) ISODATA, A novel method of data analysis and pattern classification. Tech. Rep. NTIS No. AD 699616, Standford Research Institute, Menlo Park, CA

  55. Hartigan J (1975) Clustering algorithms. Wiley, New York

    Google Scholar 

  56. Arbelaez P, Fowlkes C, Martin D The Berkeley Segmentation Dataset and Benchmark.http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

  57. Milton F (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11(1):86–92. doi:10.2307/2235971

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emrah Hancer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozturk, C., Hancer, E. & Karaboga, D. Improved clustering criterion for image clustering with artificial bee colony algorithm. Pattern Anal Applic 18, 587–599 (2015). https://doi.org/10.1007/s10044-014-0365-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-014-0365-y

Keywords

Navigation