Advertisement

Pattern Analysis and Applications

, Volume 14, Issue 2, pp 149–163 | Cite as

Line segment detection using weighted mean shift procedures on a 2D slice sampling strategy

  • Marcos NietoEmail author
  • Carlos Cuevas
  • Luis Salgado
  • Narciso García
Theoretical Advances

Abstract

A new line segment detection approach is introduced in this paper for its application in real-time computer vision systems. It has been designed to work unsupervised without any prior knowledge of the imaged scene; hence, it does not require tuning of input parameters. Although many works have been presented on this topic, as far as we know, none of them achieves a trade-off between accuracy and speed as our strategy does. The reduction of the computational cost compared to other fast methods is based on a very efficient sampling strategy that sequentially proposes points on the image that likely belong to line segments. Then, a fast line growing algorithm is applied based on the Bresenham algorithm, which is combined with a modified version of the mean shift algorithm to provide accurate line segments while being robust against noise. The performance of this strategy is tested for a wide variety of images, comparing its results with popular state-of-the-art line segment detection methods. The results show that our proposal outperforms these works considering simultaneously accuracy in the results and processing speed.

Keywords

Line segment Eigenvalues Real time Slice sampling Mean shift Bresenham algorithm 

Notes

Acknowledgments

This work has been partially supported by the Ministerio de Ciencia e Innovación of the Spanish Government under project TEC2007-67764 (SmartVision), and by the Comunidad de Madrid under project S-0505/TIC-0223 (Pro-Multidis).

References

  1. 1.
    Aggarwal N, Karl WC (2006) Line detection in images through regularized Hough transform. IIEEE Trans Image Process 15(3):582–591CrossRefGoogle Scholar
  2. 2.
    Almansa A, Desolneux A, Vamech S (2003) Vanishing point detection without any a priori information. IEEE Trans Pattern Anal Mach Intell 25(4):502–507CrossRefGoogle Scholar
  3. 3.
    Bandera A, Perez Lorenzo JM, Bandera JP, Sandoval F (2006) Mean shift based clustering of Hough domain for fast line segment detection. Pattern Recognit Lett 27(6):578–586CrossRefGoogle Scholar
  4. 4.
    Bishop CM (2006) Pattern recognition and machine learning (Information Science and Statistics). SpringerGoogle Scholar
  5. 5.
    Bresenham J (1965) Algorithm for computer control of a digital plotter. IBM Syst J 4(1):25–30CrossRefGoogle Scholar
  6. 6.
    Burns JB, Hanson AR, Riseman EM (1986) Extracting straight lines. IEEE Trans Pattern Anal Mach Intell 8(4):425–455CrossRefGoogle Scholar
  7. 7.
    Canny J (1986) A comptational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698CrossRefGoogle Scholar
  8. 8.
    Comaniciu D, Meer P (2002) Mean shift: A robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603–619CrossRefGoogle Scholar
  9. 9.
    Dayhot R (2009) Statistical Hough transform. IEEE Trans Pattern Anal Mach Intell 31(8):1502–1509CrossRefGoogle Scholar
  10. 10.
    Denis P, Elder JH, Estrada FJ (2008) Efficient edge-based methods for estimating Manhattan Frames in urban imagery. In: IEEE Proc European Conference on Computer Vision 2:197–210Google Scholar
  11. 11.
    Galambos C, Kittler J, Matas J (1999) Progressive probabilistic hough transform for lie detection. IEEE Comput Soc Conf Comput Vis Pattern Recognit 1:1554Google Scholar
  12. 12.
    Gilks W, Richardson S, Spiegelhalter D (1996) Markov Chain Monte Carlo Methods in practice. Chapman and Hall/CRCGoogle Scholar
  13. 13.
    Grompone von Gioi R, Jakubowicz J, Morel JM, Randall G (2009) LSD: a fast line segment detector with a false detection control. IEEE Trans Pattern Anal Mach Intell 99(1)Google Scholar
  14. 14.
    Guru DS, Shekar BH, Nagabhushan P (2004) A simple and robust line detection algorithm based on small eigenvalue analysis. Pattern Recognit Lett 25(1):1–13CrossRefGoogle Scholar
  15. 15.
    Han B, Comaniciu D, Zhu Y, Davis LS (2008) Sequential kernel density approximation and its application to real-time visual tracking. IEEE Trans Pattern Anal Mach Intell 30(7):1186–1197CrossRefGoogle Scholar
  16. 16.
    Heath M, Sarkar S, Sanocki T, Bowyer K (1998) Comparison of edge detectors: a methodology and initial study. Comput Vis Image understand 69(1):38–54CrossRefGoogle Scholar
  17. 17.
    Kälviäinen H, Hirvonen P, Xu L, Oja E (1994) Comparisons of probabilistic and non-probabilistic Hough transforms. Proceedings of 3rd European conference on computer vision, pp 351–360Google Scholar
  18. 18.
    Khan P, Kitchen L, Riseman EM (1990) A fast line finder for vision-guided robot navigation. IEEE Trans Pattern Anal Mach Intell 12(11):1098–1102CrossRefGoogle Scholar
  19. 19.
    Kiryati N, Eldar Y, Bruckstein AM A probabilistic hough transform. Pattern Recognit 24(4):303–316Google Scholar
  20. 20.
    Košecká J, Zhang W (2003) Video compass. European conference on computer vision, LNCS 2350, Springer, pp 476–491Google Scholar
  21. 21.
    Liebowitz D, Zisserman A (1998) Metric rectification for perspective images of planes. In: IEEE Proc. computer vision and pattern recognition 0:482–488Google Scholar
  22. 22.
    Liebowitz D, Criminisi A, Zisserman A (1999) Creating architectural models from images. Comput Graphics Forum 18(3):39–50CrossRefGoogle Scholar
  23. 23.
    Maduro C, Batista K, Peixoto P, Batista J (2008) Estimation of vehicle velocity and traffic intensity using rectified images. IEEE international conference on image processing, pp 777–780Google Scholar
  24. 24.
    Nacken PFM (1993) A metric for line segments. IEEE Trans Pattern Anal Mach Intell 15:1312–1318CrossRefGoogle Scholar
  25. 25.
    Neal R (2000) Slice sampling. Ann Stat 31:705–767MathSciNetCrossRefGoogle Scholar
  26. 26.
    Nevatia R, Babu KR (1980) Linear feature extraction and description. Comput Graphics Image Process 13:257–269CrossRefGoogle Scholar
  27. 27.
    Pflugfelder R (2008) Self-calibrating cameras in video surveillance. PhD thesis, Graz University of TechnologyGoogle Scholar
  28. 28.
    Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. Eur Conf Comput Vis 1:430–443Google Scholar
  29. 29.
    Serby D, Meier EK, Van Gool L (2004) Probabilistic object tracking using multiple features. In: Proceedings of the 17th international conference on pattern recognition 2:184–187Google Scholar
  30. 30.
    Sirakov NM, Kojouharov H, Sirakova NN (2010) Tracking Neutrophils cells by active contours with coherence and boundary improvement filter. In: IEEE Proc. SSIAI2010 5–8Google Scholar
  31. 31.
    Stephens RS (1991) Probabilistic approach to the hough transform. Image Vis Comput 9(1):66–71CrossRefGoogle Scholar
  32. 32.
    Walsh D, Raftery AE (2002) Accurate and efficient curve detection in images: the importance sampling Hough transform. Pattern Recognit 35:1421–1431zbMATHCrossRefGoogle Scholar
  33. 33.
    Wang H, Cheng Y, Fang T, Tyan J, Ahuja N (2006) Gradient adaptive image restoration and enhancement. In: IEEE Proc. international conference on image processing, pp 2893–2896Google Scholar
  34. 34.
    Xu L, Oja E, Kultanen P (1990) A new curve detection method: Randomized Hough transform (RHT). Pattern Recognit Lett 11(5):331–338zbMATHCrossRefGoogle Scholar
  35. 35.
    Yuen SYK, Lam TSL, Leung NKD (1993) Connective Hough transform. Image Vis Comput 11:295–301CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Marcos Nieto
    • 1
    Email author
  • Carlos Cuevas
    • 2
  • Luis Salgado
    • 2
  • Narciso García
    • 2
  1. 1.Vicomtech-ik4Donostia-San SebastiánSpain
  2. 2.Grupo de Tratamiento de ImágenesUniversidad Politécnica de MadridMadridSpain

Personalised recommendations