Pattern Analysis and Applications

, Volume 14, Issue 2, pp 109–126 | Cite as

Statistical thresholding method for infrared images

  • Zuoyong LiEmail author
  • Chuancai Liu
  • Guanghai Liu
  • Xibei Yang
  • Yong Cheng
Theoretical Advances


Conventional statistical thresholding methods use class variance sum as criterions for threshold selection. These approaches neglect specific characteristic of practical images and fail to obtain satisfactory results when segmenting some images with similar statistical distributions in the object and background. To eliminate the limitation, a novel statistical criterion is defined by utilizing standard deviations of two thresholded classes, and the optimal threshold is determined by optimizing the criterion. The proposed method was compared with several classic thresholding counterparts on a variety of infrared images as well as general real-world ones, and the experimental results demonstrate its superiority.


Bilevel thresholding Image segmentation Standard deviation Statistical theory Infrared image 



This work is supported by National Natural Science Foundation of China (Grant Nos. 60472061, 60632050, 90820004, 60875010), National 863 Project (Grant Nos. 2006AA04Z238, 2006AA01Z119), Technology Project of provincial university of Fujian Province (2008F5045, 2007F5083), Technology Startup Project of Minjiang University (YKQ07001) and Nanjing Institute of Technology Internal Fund (KXJ06037).


  1. 1.
    Yin PY (2000) Maximum entropy-based optimal threshold selection using deterministic reinforcement learning with controlled randomization. Signal Process 82(7):993–1006CrossRefGoogle Scholar
  2. 2.
    Bhattacharyya S, Dutta P, Maulik U (2007) Binary object extraction using bi-directional self-organizing neural network (BDSONN) architecture with fuzzy context sensitive thresholding. Pattern Anal Appl 10:345–360MathSciNetCrossRefGoogle Scholar
  3. 3.
    Sund T, Eilertsen K (2003) An algorithm for fast adaptive image binarization with applications in radiotherapy imaging. IEEE Trans Med Imaging 22(1):22–28CrossRefGoogle Scholar
  4. 4.
    Solihin Y, Leeham CG (1999) Integral ratio: a new class of global thresholding techniques for handwriting images. IEEE Trans Pattern Anal Mach Intell 21(8):761–768CrossRefGoogle Scholar
  5. 5.
    Bruzzone L, Prieto DF (2000) Automatic analysis of the difference image for unsupervised change detection. IEEE Trans Geosci Remote Sens 38(3):1171–1182CrossRefGoogle Scholar
  6. 6.
    Bazi Y, Bruzzone L, Melgani F (2007) Image thresholding based on the EM algorithm and the generalized Gaussian distribution. Pattern Recognit 40(2):619–634zbMATHCrossRefGoogle Scholar
  7. 7.
    Nakib A, Oulhadj H, Siarry P (2009) Fractional differentiation and non-Pareto multiobjective optimization for image thresholding. Eng Appl Artif Intell 22(2):236–249CrossRefGoogle Scholar
  8. 8.
    Sahoo PK, Arora G (2004) A thresholding method based on two-dimensional Renyi’s entropy. Pattern Recognit 37(6):1149–1161zbMATHCrossRefGoogle Scholar
  9. 9.
    Tsai WH (1985) Moment-preserving thresholding: a new approach. Comput Vis Graphics Image Process 29(3):377–393CrossRefGoogle Scholar
  10. 10.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hou Z, Hu Q, Nowinski WL (2006) On minimum variance thresholding. Pattern Recognit Lett 27(14):1732–1743CrossRefGoogle Scholar
  12. 12.
    Pun T (1980) A new method for grey-level picture thresholding using the entropy of histogram. Signal Process 2(3):223–227CrossRefGoogle Scholar
  13. 13.
    Kapur JN, Sahoo PK, Wong AKC (1985) A new method for grey-level picture thresholding using the entropy of the histogram. Comput Vis Graphics Image Process 29(3):273–285CrossRefGoogle Scholar
  14. 14.
    Kwon SH (2004) Threshold selection based on cluster analysis. Pattern Recognit Lett 25(9):1045–1050CrossRefGoogle Scholar
  15. 15.
    Sahoo PK, Soltani S, Wong AKC (1988) A survey of thresholding techniques. Comput Vis Graphics Image Process 41(2):233–260CrossRefGoogle Scholar
  16. 16.
    Ramesh N, Yoo JH, Sethi IK (1995) Thresholding based on histogram approximation. IEE Proc Vis Image Signal Process 142(5):271–279CrossRefGoogle Scholar
  17. 17.
    Wang S, Chung F, Xiong F (2008) A novel image thresholding method based on Parzen window estimate. Pattern Recognit 41(1):117–129zbMATHCrossRefGoogle Scholar
  18. 18.
    Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–165CrossRefGoogle Scholar
  19. 19.
    Mohar B (1989) Isoperimetric numbers of graphs. J Comb Theory Ser B 47:274–291MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Dodziuk J (1984) Difference equations, isoperimetric inequality and the transience of certain random walks. Trans Am Math Soc 284:787–794MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Grady L, Schwartz EL (2006) Isoperimetric graph partitioning for image segmentation. IEEE Trans Pattern Anal Mach Intell 28:469–475CrossRefGoogle Scholar
  22. 22.
    Yasnoff WA, Mui JK, Bacus JW (1977) Error measures for scene segmentation. Pattern Recognit 9(4):217–231CrossRefGoogle Scholar
  23. 23.
    Hu Q, Hou Z, Nowinski WL (2006) Supervised range-constrained thresholding. IEEE Trans Image Process 15(1):228–240CrossRefGoogle Scholar
  24. 24.
    Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Zuoyong Li
    • 1
    • 2
    Email author
  • Chuancai Liu
    • 1
  • Guanghai Liu
    • 3
  • Xibei Yang
    • 1
  • Yong Cheng
    • 1
  1. 1.School of Computer Science and TechnologyNanjing University of Science and TechnologyNanjingChina
  2. 2.Department of Computer ScienceMinjiang UniversityFuzhouChina
  3. 3.School of Computer Science and Information TechnologyGuangxi Normal UniversityGuilinChina

Personalised recommendations