Pattern Analysis and Applications

, Volume 13, Issue 4, pp 383–396 | Cite as

An unsupervised learning approach based on a Hopfield-like network for assessing posterior capsule opacification

Theoretical Advances

Abstract

Posterior capsule opacification (PCO) is the most common complication of cataract surgery, occurring in up to 50% of patients by 2–3 years after the operation [Spalton in Eye 13(Pt 3b):489–492, 1999]. This paper proposes a new approach for the assessment of PCO digital images. The approach deploys an unsupervised learning technique for clustering image pixels into different regions based on chromatic attributes. The innovative aspect of this paper lies in proposing the number of regions in a clustered image as a measurement tool for assessing the PCO. Experiments using synthetic data confirmed the plausibility of this approach. A series of experiments conducted on real PCO images demonstrated the robustness and stability of the proposed algorithm. Finally, the comparison of our method’s assessment with medical expert evaluation reveals a very reasonable concordance.

Keywords

Medical images Image clustering Unsupervised classification Hopfield neural network Posterior capsule opacification 

Notes

Acknowledgments

We would like to thank Dr. Tariq Aslam from the Manchester Eye Hospital, UK, for providing the PCO images and Dr. P. Bhatia, Dr. A. Rao, Dr. P. Warhekar, Dr K.H. Sathish and Dr. B.S. Chidamber from the Ophthalmology Department at Welcare Hospital, for their kind collaboration and feedback.

References

  1. 1.
    Spalton DJ (1999) Posterior capsular opacification after cataract surgery. Eye 13(Pt 3b):489–492Google Scholar
  2. 2.
    Aslam TM, Dhilon B, Werghi N, Taguri A, Wadood A (2002) Systems of analysis of posterior capsule opacification. Br J Ophtalmol 86:1181–1186CrossRefGoogle Scholar
  3. 3.
    Lasa MS, Datiles MB, Magno BV, Mahurkar A (1995) Scheimpflug photography and postcataract surgery posterior capsule opacification. J Ophthal Surg 26:110–113Google Scholar
  4. 4.
    Hayashi K, Hayashi H, Nakao F, Hayashi F (1998) In vivo quantitative measurement of posterior capsule opacification after extracapsular cataract surgery. Am J Ophthalmol 125(6): 837–843CrossRefGoogle Scholar
  5. 5.
    Tetz MR, Auffrath GU, Speaker M (1997) Photographic image analysis system, of posterior capsule opacification. J Cataract Refract Surg 23:1515–1520Google Scholar
  6. 6.
    Ursell PG, Spalton DJ, Pande MV (1998) Relationship between intraocular lens biomaterials and posterior capsule opacification. J Cataract Refract Surg 24:352–360Google Scholar
  7. 7.
    Wang MC, Woung LC (2000) Digital retroilluminated photography to analyze posterior capsule opacification in eyes with intraocular lenses. J Cataract Refract Surg 26:56–51CrossRefGoogle Scholar
  8. 8.
    Friedman DS, Duncan DD, Munoz B (1999) Digital image capture and automated analysis of posterior capsular opacification. Investig Ophthalmol Vis Sci 40:1715–1726Google Scholar
  9. 9.
    Barman B, Hollick EJ, Boyce JF (2000) Quantification of posterior, capsular opacification in digital images after cataract surgery. Investig Ophthalmol Vis Sci 41:3883–3892Google Scholar
  10. 10.
    Paplinski AP, Boyce JF (1997) Segmentation of a class of ophthalmological images using a directional variance operator and co-occurrence arrays. Opt Eng 36:3140–3147CrossRefGoogle Scholar
  11. 11.
    Paplinski AP, Boyce JF, Barman SA (2000) Automatic quantification of posterior capsule opacification. In: Proceedings of SPIE: medical imaging 3979:951–958Google Scholar
  12. 12.
    Siegl H, Pinz A, Bühl W, Georgopoulos M, Findl O, Menapace R (2001) Assessment of posterior capsule opacification after cataract surgery. In: Proceedings 12th SCIA, Scandinavian conference on image analysis, Bergen, pp 54–61Google Scholar
  13. 13.
    Findl O et al (2003) Comparison of 4 methods for quantifying posterior capsule opacification. J Cataract Refract Surg 29:106–111CrossRefGoogle Scholar
  14. 14.
    Aslam T, Patton N, Graham J (2005) A freely accessible, evidence based, objective system of analysis of posterior capsular opacification; evidence for its validity and reliability. BMC Ophthalmol 5(1):1–10CrossRefGoogle Scholar
  15. 15.
    Rao KS, Raju S, Wang JR (1993) Estimation of soil moisture and surface roughness parameters from backscattering coefficient. IEEE Trans Geosci Remote Sens 31(5):1094–1099CrossRefGoogle Scholar
  16. 16.
    Zhang K, Butler C, Yang Q (1997) A fiber optic sensor for the measurement of surface roughness and displacement using artificial neural network. IEEE Trans IEEE Trans Instrumen Meas 46(4):899–902CrossRefGoogle Scholar
  17. 17.
    Lo SP, Chiu JT, Lin HY (2005) Rapid measurement of surface roughness for face-milling aluminum using laser scattering and the Taguchi method. Int J Adv Manuf Technol 26(9–10):1071–1077CrossRefGoogle Scholar
  18. 18.
    Gunarathne GPP, Christidis K (2000) Measurement of surface texture using ultrasound. Proc IEEE Conf Instrum Meas Technol 2:611–616Google Scholar
  19. 19.
    Lee BY, Juan H, Yu SF (2002) A study of computer vision for measuring surface roughness in the turning process. Int J Adv Manuf Technol 19(4), February (2002)Google Scholar
  20. 20.
    Balagurunathan Y, Dougherty ER (2003) Morphological quantification of surface roughness. Opt Eng 42(6):1795–804CrossRefGoogle Scholar
  21. 21.
    MacKay D (2003) Information theory, inference and learning algorithms. Cambridge University PressGoogle Scholar
  22. 22.
    Tyree EW, Long JA (1998) A Monte Carlo evaluation of the moving method, k-means and two self-organising neural networks. Pattern Anal Appl 1(2):79–90MATHCrossRefGoogle Scholar
  23. 23.
    Hopefield JJ (1984) Neurons with graded response have collective computationla properties like those of two-state neurons. Proc Natl Acad Sci 81:3088–3092CrossRefGoogle Scholar
  24. 24.
    Hopfield JJ, Tank DW (1985) Neural computation of descisions in optimization problems. Biol Cybern 52:141–152MATHMathSciNetGoogle Scholar
  25. 25.
    Takefuji Y (1992) Neural network parallel computing. Kluwer Academic, DordrechtMATHGoogle Scholar
  26. 26.
    Takefuji Y (1992) Neural network parallel computing for combinatorial optimization problems. J Knowl Eng 5(3):41–61Google Scholar
  27. 27.
    Huang CL (1992) Parallel image segmentation using modified Hopfield model. Pattern Recognit Lett 13(5):345–353CrossRefGoogle Scholar
  28. 28.
    Poli R, Valli G (1995) Hopfield neural nets for the optimum segmentation of medical images. In: Fiesler E, Beale R (eds) Handbook of neural computation chapter G.5.5. Oxford University PressGoogle Scholar
  29. 29.
    Campadelli P, Medici D, Schettini R (1997) Color image segmentation using Hopfield networks. Image Vis Comput 15(3):161–166CrossRefGoogle Scholar
  30. 30.
    Kagamar-Parsi B, Gualtieri JA, Devaney JE, Kamagar- Parsi B (1990) Clustering with neural networks. Biol Cybern 61:201–208CrossRefGoogle Scholar
  31. 31.
    Amartur SC, Piraino D, Takefuji Y (1992) Optimization neural networks for the segmentation of magnetic resonance images. IEEE Trans Med Imagaing 11(2):215–220CrossRefGoogle Scholar
  32. 32.
    Rosenfeld A, Pfalz A (1966) Sequential operations in digital picture processing. J ACM 13(4):471–494MATHCrossRefGoogle Scholar
  33. 33.
    Haralick RM, Shapiro LG (1992) Computer and robot vision, vol 1. Addison–Wesley, pp 28–48Google Scholar
  34. 34.
    Glassner A (2001) Fill ’er up! IEEE Comput Graph Appl 21(1):78–85CrossRefGoogle Scholar
  35. 35.
    Preteux F, Schmitt M (1988) Random texture analysis and synthesis. In: Serra J (ed) Image analysis and mathematical morphology, vol 2. Academic Press, New YorkGoogle Scholar
  36. 36.
    Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323CrossRefGoogle Scholar
  37. 37.
    Dumitrescu D, Lazzerini B, Marcelloni F (2000) A fuzzy hierarchical classification system for olfactory signals. Pattern Anal Appl 3(4)Google Scholar
  38. 38.
    Chou Y-Y, Shapiro LG (2003) A hierarchical multiple classifier learning algorithm. Pattern Anal Appl 6:(2)Google Scholar
  39. 39.
    Omran MGH, Salman A, Engelbrecht AP (2006) Dynamic clustering using particle swarm optimization with application in image segmentation. Pattern Anal Appl 8(4)Google Scholar
  40. 40.
    Pelleg D, Moore A (2000) X-means: extending K-means with efficient estimation of the number of clusters. In: Proceedings of 17th international conference on machine learning, San Francisco, CA, USA, pp 727–734Google Scholar
  41. 41.
    Hamerly G, Elkan C (2003) Learning the k in k-means. In: Proceedings of conference on neural information processing systems, pp 281–288Google Scholar
  42. 42.
    Feng Y, Hamerly G (2006) PG-means: learning the number of clusters in data. In: Proceedings of conference on neural information processing systems, pp 393–400Google Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Naoufel Werghi
    • 1
  • Rachid Sammouda
    • 2
  • Fatma AlKirbi
    • 2
  1. 1.Department of Computer EngineeringKhalifa University for Sciences, Technology and ResearchSharjahUAE
  2. 2.Department of Computer SciencesUniversity of SharjahSharjahUAE

Personalised recommendations