Skip to main content
Log in

Microscopic Computed Tomography Based on Generalized Analytic Reconstruction from Discrete Samples

  • INFORMATION OPTICS
  • Published:
Optical Review Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 1996

Abstract

We propose a computed tomography (CT) for the incoherent optical system based on a generalized analytic reconstruction method from discrete samples (GARDS), by which an object image defined in a continuous space is reconstructed from discrete images acquired through the imaging system. We apply this method to reconstruct depth structures of micro-specimens using conventional fluorescence microscopes. Also, we discuss the optimal sampling distance in the depth direction through a generalized singular value decomposition of a continuous-to-discrete imaging system. We next apply the GARDS-based CT method to a double-axis microscope, in which two microscopes are set up perpendicularly to cover a missing frequency band of each microscopic imaging system. We show simulation results which verify the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A. Agard: Ann. Rev. Biophys. Bioeng. 13 (1984) 191.

    Article  Google Scholar 

  2. Y. Hiraoka, J.S. Minden, J.R. Swedlow, J.W. Sedat and D.A. Agard: Nature 342 (1989) 293.

    Article  PubMed  Google Scholar 

  3. A. Erhardt, G. Zinser, D. Komitowski and J. Bille: Appl. Opt. 24 (1985) 194.

    Google Scholar 

  4. G.A. Laub, G. Lenz and E.R. Reinhardt: Opt. Eng. 24 (1985) 901.

    Google Scholar 

  5. T.J. Holmes and Y.H. Liu: J. Opt. Soc. Am. A 8 (1991) 893.

    Google Scholar 

  6. G. Cox and C. Sheppard: Bioimaging 1 (1993) 82.

    Article  Google Scholar 

  7. S. Joshi and M.I. Miller: J. Opt. Soc. Am. A 10 (1993) 1078.

    Google Scholar 

  8. P.J. Shaw, D.A. Agard, Y. Hiraoka and J.W. Sedat: Biophys. J. 55 (1989) 101.

    PubMed  Google Scholar 

  9. H.C. Andrews and B.R. Hunt: Digital Image Restoration (Prentice-Hall, New York, 1977).

    Google Scholar 

  10. J.W. Goodman: Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).

    Google Scholar 

  11. M.H. Bounocore, W.R. Brody and A. Macovski: IEEE Trans. Biomed. Eng. BME-28 (1981) 69.

    Google Scholar 

  12. M. Bertero and E.R. Pike: Opt. Acta 29 (1982) 727.

    Google Scholar 

  13. M. Bertero and E.R. Pike: Opt. Acta 29 (1982) 1599.

    Google Scholar 

  14. W. Menke: Continuous Inverse Theory and Tomography, Revised ed. (Academic Press, New York, 1989) Chap. 11, p. 171.

    Google Scholar 

  15. S.P. Huestis: Inverse Probl. 8 (1992) 873.

    Article  Google Scholar 

  16. N. Ohyama and H.H. Barrett: Proc. Signal Recovery Synthesis IV, New Orleans 1992, p. 105.

  17. H. Ohzu and S. Komatsu: Optical Methods in Biomedical and Environmental Sciences, eds. N. Ohyama, M. Mimura, T. Obi and M. Yamaguchi: Image reconstruction based on continuous discrete mapping model (Elsevier, Amsterdam, 1994) p. 55.

    Google Scholar 

  18. W.K. Pratt: Digital Image Processing (John Wiley, New York, 1978).

    Google Scholar 

  19. N. Streibl: Opt. Acta 31 (1984) 1233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02931725.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kikuchi, S., Matsuya, A., Yamaguchi, M. et al. Microscopic Computed Tomography Based on Generalized Analytic Reconstruction from Discrete Samples. OPT REV 3, 22–28 (1996). https://doi.org/10.1007/s10043-996-0022-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-996-0022-9

Key words

Navigation