Skip to main content
Log in

Investigation of impairments separability in direct detection optical performance monitoring based on UMAP technique

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

This paper focuses on the channel impairments separability of two histogram-based features, asynchronous amplitude histograms (AAH) and asynchronous delay-tap plot (ADTP), commonly used in direct-detection optical performance monitoring (OPM) techniques. This paper presents an in-depth study of the conditions under which these two histogram features are applicable in OPM. These high-dimensional features, AAH and ADTP, are dimensionally reduced using a state-of-the-art data visualization algorithm called Uniform Manifold Approximation and Projection (UMAP) algorithm. After data visualization, it can be found these two histogram-based features have some limitations in distinguishing between different levels of impairments in some specific cases. These features cannot achieve high accuracy in monitoring optical performance in these given situations, no matter how complex the classifier is designed. Extensive simulation experiments were performed to study the classification performance of the two histogram features in the single and multiple impairments cases. The results show that both AAH and ADTP can be used to monitor cumulative dispersion (CD) and optical signal to noise ratio (OSNR) in the case of the single impairment. In addition, the monitoring performance of both features is better for dispersion in the case of multiple impairments coexistence, while both have limitations for OSNR monitoring. However, the anti-dispersion interference ability of ADTP is better than that of AAH. The plausibility of the study results is verified by estimating the channel impairments under different conditions using a deep neural network-based (DNN) identifier. The impairments separation visualization results of UMAP are highly consistent with the estimation results of the DNN-based classifier, achieving the interconnection of usefulness and practicality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Dong, Z., Khan, F.N., Sui, Q., Zhong, K., Lu, C., Lau, A.P.T.: Optical performance monitoring: a review of current and future technologies. J. Lightwave Technol. 34(2), 525–543 (2015)

    Article  ADS  Google Scholar 

  2. Yang, H., Zhang, J., Zhao, Y., Ji, Y., Wu, J., Lin, Y., Han, J., Lee, Y.: Performance evaluation of multi-stratum resources integrated resilience for software defined inter-data center interconnect. Opt. Express 23(10), 13384–13398 (2015)

    Article  ADS  Google Scholar 

  3. Kulandaivel, S., Jeyachitra, R.K.: Combined image Hough transform based simultaneous multi-parameter optical performance monitoring for intelligent optical networks. Optic Fiber Techol (2023). https://doi.org/10.1016/j.yofte.2023.103357

    Article  Google Scholar 

  4. Jeon, H.-B., Kim, S.-M., Moon, H.-J., Kwon, D.-H., Lee, J.-W., Chung, J.-M., Han, S.-K., Chae, C.-B., Alouini, M.-S.: Free-space optical communications for 6G wireless networks: Challenges, opportunities, and prototype validation. IEEE Commun. Mag. 61(4), 116–121 (2023)

    Article  Google Scholar 

  5. Rahmani, M., Sabri, G.N., Cherifi, A., Karar, A.S., Mrabet, H.: Massive capacity of novel three-dimensional OCDMA-FSO system for next generation of high-data wireless networks. Trans Emerg Telecommun Technol 35, e4871 (2024)

    Article  Google Scholar 

  6. Rahmani, M., Cherifi, A., Karar, A.S., Naima Sabri, G., Bouazza, B.S.: Contribution of new three-dimensional code based on the VWZCC code extension in eliminating multiple access interference in optical CDMA networks. Photonics 9(5), 310 (2022)

    Article  Google Scholar 

  7. Saif, W.S., Esmail, M.A., Ragheb, A.M., Alshawi, T.A., Alshebeili, S.A.: Machine learning techniques for optical performance monitoring and modulation format identification: a survey. IEEE Communications Surveys & Tutorials 22(4), 2839–2882 (2020)

    Article  Google Scholar 

  8. Shen, Z., Zeng, X., Wang, J., Liu, J., Lu, J., Ma, J., Zhang, Y., Fan, B.: Multi-parameter optical performance monitoring based on single-channel convolutional neural network. Opt. Fiber Technol. 80, 103472 (2023)

    Article  Google Scholar 

  9. Hall, M.N., Foerster, K.-T., Schmid, S., Durairajan, R.: A survey of reconfigurable optical networks. Opt. Switch. Netw. 41, 100621 (2021)

    Article  Google Scholar 

  10. Yin, G., Cui, S., Ke, C., Liu, D.: Reference optical spectrum based in-band OSNR monitoring method for EDFA amplified multispan optical fiber transmission system with cascaded filtering effect. IEEE Photonics J. 10(3), 1–10 (2018)

    Article  Google Scholar 

  11. Huang, Z., Qiu, J., Wang, S., Ji, X., Tian, Y., Kong, D., Yu, M., Wu, J.: Guideline of choosing optical delay time to optimize the performance of an interferometry-based in-band OSNR monitor. Opt. Lett. 41(18), 4178–4181 (2016)

    Article  ADS  Google Scholar 

  12. Lee, J.H., Choi, H.Y., Shin, S.K., Chung, Y.C.: A review of the polarization-nulling technique for monitoring optical-signal-to-noise ratio in dynamic WDM networks. J. Lightwave Technol. 24(11), 4162–4171 (2006)

    Article  ADS  Google Scholar 

  13. Tanimura, T., Hoshida, T., Kato, T., Watanabe, S., Morikawa, H.: Simple learning method to guarantee operational range of optical monitors. J Opt Commun Netw 10(10), D63–D71 (2018)

    Article  Google Scholar 

  14. Khan, F.N., Zhong, K., Zhou, X., Al-Arashi, W.H., Yu, C., Lu, C., Lau, A.P.T.: Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks. Opt. Express 25(15), 17767–17776 (2017)

    Article  ADS  Google Scholar 

  15. Hauske, F.N., Kuschnerov, M., Spinnler, B., Lankl, B.: Optical performance monitoring in digital coherent receivers. J. Lightwave Technol. 27(16), 3623–3631 (2009)

    Article  ADS  Google Scholar 

  16. Wang, D., Sui, Q., Li, Z.: Toward universal optical performance monitoring for intelligent optical fiber communication networks. IEEE Commun. Mag. 58(9), 54–59 (2020)

    Article  Google Scholar 

  17. Shen, T.S.R., Meng, K., Lau, A.P.T., Dong, Z.Y.: Optical performance monitoring using artificial neural network trained with asynchronous amplitude histograms. IEEE Photonics Technol. Lett. 22(22), 1665–1667 (2010)

    Google Scholar 

  18. Dods S. D, Anderson T.: Optical performance monitoring technique using delay tap asynchronous waveform sampling. Optic Fiber Commun Conference, OThP5 (2006)

  19. Xu, J., Zhao, J., Li, S., Xu, T.: Optical performance monitoring in transparent fiber-optic networks using neural networks and asynchronous amplitude histograms. Opt. Commun. 517, 128305 (2022)

    Article  Google Scholar 

  20. Wang, D., Wang, M., Zhang, M., Zhang, Z., Yang, H., Li, J., Li, J., Chen, X.: Cost-effective and data size–adaptive OPM at intermediated node using convolutional neural network-based image processor. Opt. Express 27(7), 9403–9419 (2019)

    Article  ADS  Google Scholar 

  21. Saif, W.S., Alshawi, T., Esmail, M.A., Ragheb, A., Alshebeili, S.: Separability of histogram based features for optical performance monitoring: an investigation using t-SNE technique. IEEE Photonics J. 11(3), 1–12 (2019)

    Article  Google Scholar 

  22. Saif, W.S., Ragheb, A.M., Alshawi, T.A., Alshebeili, S.A.: Optical performance monitoring in mode division multiplexed optical networks. J. Lightwave Technol. 39(2), 491–504 (2020)

    Article  ADS  Google Scholar 

  23. Diaz-Papkovich, A., Anderson-Trocmé, L., Gravel, S.: A review of UMAP in population genetics. J. Hum. Genet. 66(1), 85–91 (2021)

    Article  Google Scholar 

  24. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579 (2008)

    Google Scholar 

  25. van der Maaten, L., Postma, E., van den Herik, J.: Dimensionality reduction: a comparative. J. Mach. Learn. Res. 10(66–71), 13 (2009)

    Google Scholar 

  26. Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction, vol. 1. Springer, New York (2007)

    Book  Google Scholar 

  27. Cai, T.T., Ma, R.: Theoretical foundations of t-sne for visualizing high-dimensional clustered data. J. Mach. Learn. Res. 23(1), 13581–13634 (2022)

    MathSciNet  Google Scholar 

  28. Du, Y., Sui, J., Wang, S., Fu, R., Jia, C.: Motor intent recognition of multi-feature fusion EEG signals by UMAP algorithm. Med. Biol. Eng. Comput. 61(10), 2665–2676 (2023)

    Article  Google Scholar 

  29. Stolarek, I., Samelak-Czajka, A., Figlerowicz, M., Jackowiak, P.: Dimensionality reduction by UMAP for visualizing and aiding in classification of imaging flow cytometry data. Iscience (2022). https://doi.org/10.1016/j.isci.2022.105142

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Science and Technology Bureau of Hebei Province, grant number 17275404D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangye Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Zeng, X., Wang, J. et al. Investigation of impairments separability in direct detection optical performance monitoring based on UMAP technique. Opt Rev (2024). https://doi.org/10.1007/s10043-024-00878-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10043-024-00878-4

Keywords

Navigation