Skip to main content
Log in

Linear image sensor with triangular pixel geometry specialized for the light section method

  • Special Section: Regular Paper
  • The Fourteenth Japan-Finland Joint Symposium on Optics in Engineering (OIE’23), Hamamatsu, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We propose a linear image sensor specialized for the light section method to achieve high-speed and low-latency height measurement. This linear image sensor has pixels in the shape of triangles pointing upward and downward, which allows fast data readout and simple data processing of the cross-sectional profile acquisition. We have confirmed the basic feasibility of the sensor by numerical simulation. We also fabricated a prototype of the proposed sensor with 508 pixels. We conducted height measurement of the vertical translate stage and the step pyramid-shaped object and confirmed that the proposed sensor functions as a sensor for light section method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but it can be obtained from the authors upon reasonable request.

References

  1. Javaid, M., Haleem, A., Singh, R.P., Suman, R.: Exploring impact and features of machine vision for progressive industry 4.0 culture. Sens. Int. 3, 100132 (2022)

    Article  Google Scholar 

  2. Kanellakis, C., Nikolakopoulos, G.: Survey on computer vision for UAVs: current developments and trends. J. Intell. Rob. Syst. 87, 141–168 (2017)

    Article  Google Scholar 

  3. Velez, G., Otaegui, O.: Embedding vision-based advanced driver assistance systems: a survey. In: IET Intelligent transports systems, Special Issue: Selected papers from the 22nd ITS World congress, Bordeaux (2015)

  4. Zhang, J., Yang, X., Wang, W., Guan, J., Ding, L., Lee, V.C.S.: Automated guided vehicles and autonomous mobile robots for recognition and tracking in civil engineering. Autom. Constr. 146, 104699 (2023)

    Article  Google Scholar 

  5. Alatise, M., Hancke, G.: A review on challenges of autonomous mobile robot and sensor fusion method. IEEE Access 8, 39830–39846 (2020)

    Article  Google Scholar 

  6. Unger, S.: A Computer Oriented Toward Spatial Problems. In: Proc. IRE-ACM-AIEE ’58 (Western), pp. 234–239 (1958)

  7. McCormick, B.: The Illinois pattern recognition computer-ILLIAC III. IEEE Trans. Electron. Comput. EC-12(6), 791–813 (1963)

    Article  Google Scholar 

  8. Fountain, T., Goetcherian, V.: CLIP 4 parallel processing system. IEEE Proc. 127(5), 220–224 (1980)

    Google Scholar 

  9. Batcher, K.: Bit-serial parallel processing systems. IEEE Trans. Comput. C–31(5), 377–384 (1982)

    Article  Google Scholar 

  10. Kruse, B.: A parallel picture processing machine. IEEE Trans. Comput. C–22(12), 1075–1087 (1973)

    Article  ADS  Google Scholar 

  11. Ericsson, T., Danielsson, P.: LIPP-A SIMD Multiprocessor Architecture for Image Processing. In: Proc. 10th Annual Symposium on Computer Architecture, pp. 395–400 (1983)

  12. Reeves, A.: A systematically designed binary array processor. IEEE Trans. Comput. C–29(4), 278–287 (1980)

    Article  Google Scholar 

  13. Nakabo, Y., Ishii, I., Ishikawa, M.: 1 ms target tracking system using massively parallel processing vision. J. Robot. Soc. Japan 15(3), 414–421 (1997)

    Article  Google Scholar 

  14. Mizuno, S., Fujita, K., Yamamoto, H., Mukozaka, N., Toyoda, H.: A 256 × 256 compact CMOS image sensor with on-chip motion detection function. IEEE J. Solid-State Circuits 38(6), 1072–1075 (2003)

    Article  ADS  Google Scholar 

  15. Sugiyama, Y., Takumi, M., Toyoda, H., Mukozaka, N., Ihori, A., Kurashina, T., et al.: A high-speed CMOS image sensor with profile data acquiring function. IEEE J. Solid-State Circuits 40(12), 2816–2823 (2005)

    Article  ADS  Google Scholar 

  16. Toyoda, H., Takumi, M., Mukozaka, N., Ishikawa, M.: 1 kHz measurement by using intelligent vison system—stereovison experiment on column parallel vision system: CPV4. In: 2008 SICE Annual Conference, 20–22 Aug (2008)

  17. Yamazaki, T., Katayama, H., Uehara, S., Nose, A., Kobayashi,M., Shida, S., et al.: A 1ms High-Speed Vision Chip with 3D-Stacked 140GOPS Column-Parallel PEs for Spatio-Temporal Image Processing. In: International Solid-State Circuits Conference (ISSCC 2017), Proce., pp. 82–83 (2017)

  18. Matsui, Y., Sugiyama, Y., Ihori, A., Toyoda, H., Mukozaka, N., Mizuno, S.: High Speed 3D Measurement module Using Profile Sensor. In: Proc. Symposium on Sensing via Image Information (SSII 2004), D-2, pp. 241–246 (2004)

  19. Sugiyama, Y., Matsui, Y., Toyoda, H., Mukozaka, N., Ihori, A., Abe, T., et al.: A 3.2 kHz, 14-bit optical absolute rotary encoder with a CMOS profile sensor. IEEE Sens. J. 8(8), 1430–1436 (2008)

    Article  ADS  Google Scholar 

  20. Takahashi, H., Shinohara, M., Sugawa, S.: Area auto focus CMOS sensor with CMOS inversion amplifier type frame memory for noise cancellation. J. Inst. Image Inf. Telev. Eng. 54(2), 229–241 (2000)

    Google Scholar 

  21. Araki, K., Sato, Y., Parthasarathy, S.: High Speed Rangefinder. In: Proc. SPIE 0850, Optics, Illumination, and Image Sensing for Machine Vision II, 12 Mar (1988)

  22. Brajovic, V., Mori, K., Jankovic, N.: A100frames/s CMOS Range Image Sensor. In: Conference Paper in Digest of Technical Papers – IEEE Solid-State Circuits Conference, Feb (2001)

  23. Oike, Y., Ikeda, M., Asada, K.: Design and implementation of real-time 3-D image sensor with 640 /spl times/ 480 pixel resolution. IEEE J. Solid-State Circuits 39(4), 622–628 (2004)

    Article  ADS  Google Scholar 

  24. Oike, Y., Ikeda, M., Asada, K.: A 375 /spl rimes/ 365 high-speed 3-D range-finding image sensor using row-parallel search architecture and multisampling technique. IEEE J. Solid-State Circuits 40(2), 444–453 (2005)

    Article  ADS  Google Scholar 

  25. Mandai, S., Ikeda, M., Asada,K.: A 256 × 256 14 k range maps/s 3-D range-finding image sensor using row-parallel embedded binary. In: 2010 IEEE International Solid-State Circuits Conference (ISSCC), 07–11 Feb (2010)

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munenori Takumi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest associated with this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takumi, M., Uchida, K. & Ishii, K. Linear image sensor with triangular pixel geometry specialized for the light section method. Opt Rev (2024). https://doi.org/10.1007/s10043-024-00872-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10043-024-00872-w

Keywords

Navigation