Skip to main content
Log in

A study of modeling method of strapdown stable attitude in laser communication networking

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Airborne one-point to multiple-point laser communication terminal is an important node in laser communication networking. In order to meet the requirements of miniaturization and lightweight of the optical transceivers, we simplify several gyroscopes of the optical transceiver and shared the strapdown stable information with only one gyroscope. According to the position relationship between mirrors on the optical transceiver, we establish a series of new mirror coordinate systems. Based on these coordinate systems, we extend the application of the concepts of projection transformation and Euler angle, and supply the mathematical model of attitude stability of multi-mirror with single gyro. In the process of deducing the mathematical model, we notice that the arc tangent function can only solve the function values in the range of (\(-\,90^{\circ }, 90^{\circ }\)), but can not satisfy the full-cycle motion calculation of yaw attitude. Through the analysis of the elements in the attitude transformation matrix, we found the model modification methods of mirrors in different positions, which can expand the range of yaw attitude calculation. We simulate four mirrors mounted at \(0^{\circ }\), \(90^{\circ }\), \(180^{\circ }\) and \(-90^{\circ }\) positions of the optical transceiver and give the calculation curves of yaw attitude. The results show that the maximum calculation range of the yaw attitude of each mirror is \((-\,90^{\circ },90^{\circ })\) before adopting the modification methods. As the pitch attitude decreases, the calculation range also shrink. After adopting the modification methods, the calculation range is increased to \((0^{\circ },360^{\circ })\). The mathematical model and modification methods provide theoretical support for multi-attitude stabilization system with single gyro and greatly reduce the burden of airplane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wang, C., Zhang, T., Tong, S.F., Li, Y.C., Jiang, L., Liu, Z., Shi, H.D., Liu, J.H., Jiang, H.L.: Pointing and tracking errors due to low-frequency deformation in inter-satellite laser communication. J. Mod. Opt. 66(4), 430–437 (2019)

    Article  ADS  Google Scholar 

  2. Dix-Matthews, B.P., Schediwy, S.W., Gozzard, D.R., Savalle, E., Esnault, F.-X., Lévèque, T., Gravestock, C., D’Mello, D., Karpathakis, S., Tobar, M., et al.: Point-to-point stabilized optical frequency transfer with active optics. Nat. Commun. 12(1), 1–8 (2021)

    Article  Google Scholar 

  3. Haq, A., Yuksel, M.: Multi-element full-duplex fso transceiver design using optimum tiling. Opt. Commun. 6, 127377 (2021)

    Article  Google Scholar 

  4. Fox, N.D., Begley, D.L., Seery, B.D., Maynard, W.L., Clarke, E.S., Bruno, R.C.: Gsfc conceptual design study for an inter-satellite optical multiple access communication system. Int. Soc. Opt. Photon. 1417, 452 (1991)

    Google Scholar 

  5. Ross, M.: A unique multi-access laser communications transceiver system. Proc. SPIE Int. Soc. Opt. Eng. 31(38), 7729–7749 (1990)

    Google Scholar 

  6. Caplan, D., Schulein, R., Carney, J., Stevens, M., Spector, S.: Wdm laser transmitters for mobile free-space laser communications. In: Free-Space Laser Communication and Atmospheric Propagation XXVIII, vol. 9739, pp. 267–277. SPIE (2016)

  7. Huilin, J., Yuan, H., Ying, D., Qiang, F., Yan, L.: Optical principle research of space laser communication network. Acta Opt. Sin. 32(10), 1006003 (2012)

    Article  Google Scholar 

  8. Huilin, J., Lun, J., Yansong, S., Lixin, M., Xiaonan, Y.: Research of optical and apt technology in one-point to multi-point simultaneous space laser communication system. Chin. J. Lasers 42(4), 0405008 (2015)

    Article  Google Scholar 

  9. Jiang, L., Zhang, L.-Z., Wang, C., An, Y., Hu, Y.: Optical multiaccess free-space laser communication system. Opt. Eng. 55(8), 086102 (2016)

    Article  ADS  Google Scholar 

  10. Li-xin, M., Ding-xuan, Z., Li-zhong, Z., Hui-lin, J., Xiao-ming, L.: The test of tracking accuracy and design of airborne laser communication stabilized pod. Acta Armamentarii 36(10), 1916 (2015)

    Google Scholar 

  11. Zhang, M., Li, B., Tong, S.: A new composite spiral scanning approach for beaconless spatial acquisition and experimental investigation of robust tracking control for laser communication system with disturbance. IEEE Photon. J. 12(6), 3031260 (2020)

    Article  ADS  Google Scholar 

  12. Friederichs, L., Sterr, U., Dallmann, D.: Vibration influence on hit probability during beaconless spatial acquisition. J. Lightwave Technol. 34(10), 2500–2509 (2016)

    Article  ADS  Google Scholar 

  13. Deng, J., Zhou, X., Mao, Y.: On vibration rejection of nonminimum-phase long-distance laser pointing system with compensatory disturbance observer. Mechatronics 74(7540), 102490 (2021)

    Article  Google Scholar 

  14. RUDIN, R.: Strapdown stabilization for imaging seekers. In: Annual Interceptor Technology Conference, p. 2660 (1993)

  15. Pinson, G.T.: Hybrid semi-strapdown infrared seeker. US Patent US4615496 A (1986)

  16. Fritzel, B.G.: Stabilized pointing mirror. US Patent EP0356502 (1992)

  17. Nag, M., Singh, J., Kumar, A., Alvi, P., Singh, K.: Sensitivity enhancement and temperature compatibility of graphene piezoresistive mems pressure sensor. Microsyst. Technol. 25(10), 3977–3982 (2019)

    Article  Google Scholar 

  18. Samridhi, K.M., Dhariwal, S., Singh, K., Alvi, P.: Stress and frequency analysis of silicon diaphragm of mems based piezoresistive pressure sensor. Int. J. Mod. Phys. B 33(07), 1950040 (2019)

    Article  ADS  Google Scholar 

  19. Singh, K., Alvi, P., et al.: Influence of the pressure range on temperature coefficient of resistivity (tcr) for polysilicon piezoresistive mems pressure sensor. Phys. Scr. 95(7), 075005 (2020)

    Article  ADS  Google Scholar 

  20. Singh, K., Alvi, P., et al.: Finite element analysis of polysilicon based mems temperature-pressure sensor. Mater. Today Proc. 27, 280–283 (2020)

    Article  Google Scholar 

  21. Sharma, M., Singh, K., Kumar, S., Alvi, P., et al.: Analytical study of graphene as a novel piezoresistive material for mems pressure sensor application. J. Nano-Electron. Phys. 12(2), 1–4 (2020)

    Google Scholar 

  22. Kennedy, P.J., Kennedy, R.L.: Direct versus indirect line of sight (los) stabilization. IEEE Trans. Control Syst. Technol. 11(1), 3–15 (2003)

    Article  Google Scholar 

  23. Lee, T.H., Tan, K.K., Lee, M.W.: A variable structure-augmented adaptive controller for a gyro-mirror line-of-sight stabilization platform. Mechatronics 8(1), 47–64 (1998)

    Article  Google Scholar 

  24. Latifzade, M.A., Arvan, M.R., Mohseni Armaki, H.: Monopulse antenna-pointing system modelling and simulation. IET Radar Sonar Navig. 13(4), 646–652 (2019)

    Article  Google Scholar 

  25. Masten, M.K.: Inertially stabilized platforms for optical imaging systems. IEEE Control Syst. Mag. 28(1), 47–64 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gao, Z., Wang, L., Guo, Y.: Analysis on motion compensation for a horizontal stable platform. Aust. J. Mech. Eng. 17(3), 175–184 (2019)

    Article  Google Scholar 

  27. Zhang, W., Ghogho, M., Yuan, B.: Mathematical model and matlab simulation of strapdown inertial navigation system. Model. Simul. Eng. 2012, 1–25 (2012)

    Article  Google Scholar 

  28. Savage, P.G.: Strapdown inertial navigation integration algorithm design part 2: velocity and position algorithms. J. Guid. Control Dyn. 21(2), 208–221 (1998)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This paper was supported by the Joint Funds of the National Natural Science Foundation of China, Grant No. U2141231, and Science and Technology Research Project of Education Department of Jilin Province, No. JJKH20210836KJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhong Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, L., Meng, L. et al. A study of modeling method of strapdown stable attitude in laser communication networking. Opt Rev 30, 190–198 (2023). https://doi.org/10.1007/s10043-023-00799-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-023-00799-8

Keywords

Navigation