Skip to main content
Log in

Vacancy defect influences on optoelectronic properties for In0.875Ga0.125As0.25P0.75: a first-principles study

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

InGaAsP photocathodes show great potential for near-infrared applications, particularly at 1.06 μm. However, vacancy defects are unavoidable in InGaAsP crystals during their growth. Various defective models were constructed for In0.84375Ga0.125As0.25P0.75, In0.875Ga0.09375As0.25P0.75, In0.875Ga0.125As0.21875P0.75 and In0.875Ga0.125As0.25P0.71875 to study In, Ga, As and P vacancy defect influences respectively on In0.875Ga0.125As0.25P0.75 bulk properties. The electronic structure, formation energy, Mulliken population, electron density difference, and optical properties of defective crystals were calculated from first principles. Results show that In0.875Ga0.125As0.25P0.71875 has the lowest formation energy, implying that P vacancy defect is most easy formed. In and Ga vacancies are negatively charged and act as acceptors, whereas As and P vacancies are positively charged and act as donors. Increased populations of Ga-P and In-P bonds around the vacancies strengthen the covalency. In and Ga vacancies in the low-energy region significantly improve optical conductivity, reflectivity, and introduce new abnormal dispersion. Although As and P vacancies do not change the dispersion properties in the low energy region, they increase the refractive index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Giudicotti, L., Pasqualo, R., Alfier, A., Beurskens, M., Kempenaars, M., Flanagan, J.C., Walsh, M.J., Balboa, I.: Near-infrared detectors for ITER LIDAR Thomson scattering. Fusion Eng. Des. 86, 198–205 (2011). https://doi.org/10.1016/j.fusengdes.2010.12.055

    Article  Google Scholar 

  2. K.A. Mcintosh, J.P. Donnelly, D.C. Oakley, A. Napoleone, D.C. Shaver, Development of Geiger-mode APD arrays for 1.06 μm. In: Proc LEOS Annual Meeting. 2 (2002). 760–761. https://doi.org/10.1109/LEOS.2002.1159529.

  3. Olsen, G.H., Szostak, D.J., Zamerowski, T.J., Ettenberg, M.: High-performance GaAs photocathodes. J. Appl. Phys. 48, 1007–1008 (1977). https://doi.org/10.1063/1.323798

    Article  ADS  Google Scholar 

  4. Sun, Y., Kirby, R.E., Maruyama, T., Mulhollan, G.A., Bierman, J.C., Pianetta, P.: The surface activation layer of GaAs negative electron affinity photocathode activated by Cs, Li, and NF3. Appl. Phys. Lett. 95, 174109 (2009). https://doi.org/10.1063/1.3257730

    Article  ADS  Google Scholar 

  5. Blankemeier, L., Rezaeifar, F., Garg, A., Kapadia, R.: Integrated photonics for low transverse emittance, ultrafast negative electron affinity GaAs photoemitters. J. Appl. Phys. 126, 33102 (2019). https://doi.org/10.1063/1.5093938

    Article  Google Scholar 

  6. André, J.P., Guittard, P., Hallais, J., Piaget, C.: GaAs photocathodes for low light level imaging. J. Cryst. Growth. 55, 235–245 (1981). https://doi.org/10.1016/0022-0248(81)90293-1

    Article  ADS  Google Scholar 

  7. James, L.W., Antypas, G.A., Moon, R.L., Edgecumbe, J., Bell, R.L.: Photoemission from cesium-oxide-activated InGaAsP. Appl. Phys. Lett. 22, 270–271 (1973). https://doi.org/10.1063/1.1654634

    Article  ADS  Google Scholar 

  8. Dolia, R., Bhardwaj, G., Singh, A.K., Kumar, S., Alvi, P.A.: Optimization of Type-II ‘W’ shaped InGaAsP/GaAsSb nanoscale-heterostructure under electric field and temperature. Superlattices Microstruct. 112, 507–516 (2017). https://doi.org/10.1016/j.spmi.2017.10.007

    Article  ADS  Google Scholar 

  9. Xi, S.P., Gu, Y., Zhang, Y.G., Chen, X.Y., Ma, Y.J., Zhou, L., Du, B., Shao, X.M., Fang, J.X.: InGaAsP/InP photodetectors targeting on 1.06μm wavelength detection. Infrared Phys. Technol. 75, 65–69 (2016). https://doi.org/10.1016/j.infrared.2015.12.013

    Article  ADS  Google Scholar 

  10. Adachi, S.: In: Kasap, S., Capper, P. (eds.) III-V ternary and quaternary compounds BT-springer handbook of electronic and photonic materials, pp. 735–752. Springer, Boston (2007)

    Google Scholar 

  11. Escher, J.S., Antypas, G.A., Edgecumbe, J.: High-quantum-efficiency photoemission from an InGaAsP photocathode. Appl. Phys. Lett. 29, 153–155 (1976). https://doi.org/10.1063/1.89005

    Article  ADS  Google Scholar 

  12. Bacuyag, D., Escaño, M.C.S., David, M., Tani, M.: First-principles study of structural, electronic, and optical properties of surface defects in GaAs(001)β2(2x4). AIP Adv. 8, 65012 (2018)

    Article  Google Scholar 

  13. Rouzhahong, Y., Wushuer, M., Mamat, M., Wang, Q., Wang, Q.: First principles calculation for photocatalytic activity of GaAs monolayer. Sci. Rep. 10, 9597 (2020). https://doi.org/10.1038/s41598-020-66575-9

    Article  ADS  Google Scholar 

  14. Escaño, M.C., Balgos, M.H., Nguyen, T.Q., Prieto, E.A., Estacio, E., Salvador, A., Somintac, A., Jaculbia, R., Hayazawa, N., Kim, Y., Tani, M.: True bulk As-antisite defect in GaAs(110) identified by DFT calculations and probed by STM/STS measurements. Appl. Surf. Sci. 511, 145590 (2020). https://doi.org/10.1016/j.apsusc.2020.145590

    Article  Google Scholar 

  15. Clark, S., Segall, M., Pickard, C., Hasnip, P., Probert, M., Refson, K., Payne, M.: First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005). https://doi.org/10.1524/zkri.220.5.567.65075

    Article  Google Scholar 

  16. Floris, A., Timrov, I., Himmetoglu, B., Marzari, N., de Gironcoli, S., Cococcioni, M.: Hubbard-corrected density functional perturbation theory with ultrasoft pseudopotentials. Phys. Rev. B. 101, 064305 (2020)

    Article  ADS  Google Scholar 

  17. Escaño, M., Nguyen, T., Osanai, Y., Kasai, H., Tani, M.: Large-scale spin-polarized DFT calculation of electronic properties of GaAs with defects. Mater. Res. Express. 6, 055914 (2019). https://doi.org/10.1088/2053-1591/ab0640

    Article  ADS  Google Scholar 

  18. Albavera-Mata, A., Botello-Mancilla, K., Trickey, S., Gázquez, J., Vela, A.: Generalized gradient approximations with local parameters. Phys. Rev. B 102, 035129 (2020). https://doi.org/10.1103/PhysRevB.102.035129

    Article  ADS  Google Scholar 

  19. Querales, J., Ventura, C., Fuhr, J.: Effect of N interstitial complexes on the electronic properties of GaAs1-xNx alloys from first principles. Phys. Rev. Mater. 3, 24602 (2019). https://doi.org/10.1103/PhysRevMaterials.3.024602

    Article  Google Scholar 

  20. Pack, J., Monkhorst, H.: “Special points for Brillouin-zone integrations”—a reply. Phys. Rev. B-Phys. Rev. B 16, 1748–1749 (1977). https://doi.org/10.1103/PhysRevB.16.1748

    Article  ADS  Google Scholar 

  21. Glisson, T.H., Hauser, J.R., Littlejohn, M.A., Williams, C.K.: Energy bandgap and lattice constant contours of III-V quaternary alloys. J. Electron. Mater. 7, 639–646 (1978). https://doi.org/10.1007/bf02655439

    Article  ADS  Google Scholar 

  22. Komsa, H.-P., Pasquarello, A.: Comparison of vacancy and antisite defects in GaAs and InGaAs through hybrid functionals. J. Phys. Condens. Matter. 24, 45801 (2012). https://doi.org/10.1088/0953-8984/24/4/045801

    Article  Google Scholar 

  23. Bagayoko, D.: A mathematical solution to the theoretical band gap underestimation: predictive calculations of properties of semiconductors. Am. J. Phys. 1, 15–35 (2008)

    Google Scholar 

  24. Ma, D., Cheng, J., Zhang, J., Cao, Y., Li, E.: The influence of the Cu doping position on GaAs: first-principles calculations. Mater. Today Commun. 25, 101549 (2020). https://doi.org/10.1016/j.mtcomm.2020.101549

    Article  Google Scholar 

  25. Koppolu, U.M.K.: Electronic band structure and complex dielectric function of zb-AlP: a first principles study. Acta Phys. Pol. A 136, 486–489 (2019). https://doi.org/10.12693/APhysPolA.136.486

    Article  Google Scholar 

  26. Seifert, S., Runge, P.: Revised refractive index and absorption of In1-xGaxAsyP1-y lattice-matched to InP in transparent and absorption IR-region. Opt. Mater. Express. 6, 629–639 (2016). https://doi.org/10.1364/OME.6.000629

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financed by the National Natural Science Foundation of China (Grant No. 61971386), Public Welfare project of Ningbo City (202002N3139, 2019C10051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junju Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, J., Zhang, J. et al. Vacancy defect influences on optoelectronic properties for In0.875Ga0.125As0.25P0.75: a first-principles study. Opt Rev 30, 166–173 (2023). https://doi.org/10.1007/s10043-023-00797-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-023-00797-w

Keywords

Navigation