Skip to main content
Log in

Controlling the transmission angle of terahertz waves based on polarization-sensitive encoded metagrating metamaterials

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A polarization-sensitive transmissive all-dielectric-encoded metagrating in the terahertz band is proposed. Encoded metagratings are composed of all-dielectric materials and have the advantages of high transmission characteristics and low loss. Based on the electromagnetic dipole resonance of the all-dielectric resonator, the phase mutation of the unit structure can be realized. The far-field scattering characteristics of the designed metagrating are analyzed. The encoding metagratings can adjust the transmission angle of the terahertz beam by changing the different arrangements of the basic units. According to the generalized Snell’s law, the beam scattering angle of the encoded metagrating is determined by the grating period. Therefore, for the traditional gradient-phase metagrating sequence, only the limited scattering angle can be regulated. To obtain the flexible regulation of the scattering angle of terahertz wave, we introduce the Fourier convolution principle in digital signal processing, and combine the signal control theory with the encoded metagrating sequence. The digitally encoded addition and subtraction operations are used to obtain a new encoded metagrating sequence, which enables flexible regulation of the far-field scattering angle of the terahertz beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Availability of data and materials

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. He, X.: Tunable terahertz graphene metamaterials. Carbon 82, 229–237 (2015)

    Article  Google Scholar 

  2. He, X., Zhong, X., Lin, F., Shi, W.: Investigation of graphene assisted tunable terahertz metamaterials absorber. Opt. Mater. Express 6, 331–342 (2016)

    Article  ADS  Google Scholar 

  3. He, X., Liu, F., Lin, F., Shi, W.: Tunable 3D Dirac-semimetals supported mid-IR hybrid plasmonic waveguides. Opt. Lett. 46, 472–475 (2021)

    Article  ADS  Google Scholar 

  4. He, X., Liu, F., Lin, F., Shi, W.: Tunable terahertz Dirac semimetal metamaterials. J. Phys. D: Appl. Phys. 54, 235103 (2021)

    Article  ADS  Google Scholar 

  5. Peng, J., He, X., Shi, C., Leng, J., Lin, F., Liu, F., Zhang, H., Shi, W.: Investigation of graphene supported terahertz elliptical metamaterials. Physica E 124, 114309 (2020)

    Article  Google Scholar 

  6. Jing, X., Jin, S., Tian, Y., Liang, P., Dong, Q., Wang, L.: Analysis of the sinusoidal nanopatterning grating structure. Opt. Laser Technol. 48, 160–166 (2013)

    Article  ADS  Google Scholar 

  7. Jing, X., Xu, Y., Gan, H., He, Y., Hong, Z.: High refractive index metamaterials by using higher order modes resonances of hollow cylindrical nanostructure in visible region. IEEE Access 7, 144945–144956 (2019)

    Article  Google Scholar 

  8. Jiang, L., Fang, B., Yan, Z., Fan, J., Qi, C., Liu, J., He, Y., Li, C., Jing, X., Gan, H., Hong, Z.: Terahertz high and near-zero refractive index metamaterials by double layer metal ring microstructure. Opt. Laser Technol. 123, 105949 (2020)

    Article  Google Scholar 

  9. Lv, H., Lu, X., Han, Y., Mou, Z., Teng, S.: Multifocal metalens with a controllable intensity ratio. Opt. Lett. 44(10), 2518–2521 (2019)

    Article  ADS  Google Scholar 

  10. Wang, H., Liu, L., Zhou, C., Xu, J., Zhang, M., Teng, S., Cai, Y.: Vortex beam generation with variable topological charge based on a spiral slit. Nanophotonics 8(2), 317–324 (2019)

    Article  Google Scholar 

  11. Li, J., Yuan, Y., Qun, W., Burokur, S.N., Zhang, K.: Dual-band independent phase control based on high efficiency metasurface [Invited]. Chin. Opt. Lett. 19, 100501 (2021)

    Article  ADS  Google Scholar 

  12. Teng, S., Zhang, Q., Wang, H., Liu, L., Lv, H.: Conversion between polarization states based on metasurface. Photonics Res. 7(3), 246–250 (2019)

    Article  Google Scholar 

  13. Akram, M.R., Ding, G., Chen, K., Feng, Y., Zhu, W.: Ultra-thin single layer metasurfaces with ultra-wideband operation for both transmission and reflection. Adv. Mater. 32, 1907308 (2020)

    Article  Google Scholar 

  14. Zhang, J., Wei, X., Rukhlenko, I.D., Chen, H.-T., Zhu, W.: Electrically tunable metasurface with independent frequency and amplitude modulations. ACS Photonics 7(1), 265–271 (2020)

    Article  Google Scholar 

  15. Wang, H., Zhang, Z., Zhao, K., Liu, W., Wang, P., Yonghua, L.: Independent phase manipulation of co- and cross-polarizations with all-dielectric metasurface. Chin. Opt. Lett. 19, 053601 (2021)

    Article  ADS  Google Scholar 

  16. Fang, Bo., Cai, Z., Peng, Y., Li, C., Hong, Z., Jing, X.: Realization of ultrahigh refractive index in terahertz region by multiple layers coupled metal ring metamaterials. J. Electromagn. Waves Appl. 33(11), 1375–1390 (2019)

    Article  ADS  Google Scholar 

  17. Fang, B., Li, B., Peng, Y., Li, C., Hong, Z., Jing, X.: Polarization-independent multiband metamaterials absorber by fundamental cavity mode of multilayer microstructure. Microw. Opt. Technol. Lett. 61, 2385–2391 (2019)

    Article  Google Scholar 

  18. Wang, W., Jing, X., Zhao, J., Li, Y., Tian, Y.: Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure. Opt. Appl. 47(2), 183–198 (2017)

    Article  Google Scholar 

  19. Jiang, L., Fang, B., Yan, Z., et al.: Improvement of unidirectional scattering characteristics based on multiple nanospheres array. Microw Opt. Technol. Lett. 62(6), 2405–2414 (2020)

    Article  Google Scholar 

  20. Zhao, Y., Huang, Q., Cai, H., Lin, X., He, H., Cheng, H., Ma, T., Yalin, L.: Ultrafast control of slow light in THz electromagnetically induced transparency metasurfaces. Chin. Opt. Lett. 19, 073602 (2021)

    Article  ADS  Google Scholar 

  21. Khaliq, H.S., Kim, I., Zahid, A., Kim, J., Lee, T., Badloe, T., Kim, Y., Zubair, M., Riaz, K., Mehmood, M.Q., Rho, J.: Giant chiro-optical responses in multipolar-resonances-based single-layer dielectric metasurfaces. Photonics Res. 9(9), 09001667 (2021)

    Article  Google Scholar 

  22. Parry, M., Mazzanti, A., Poddubny, A., Valle, G.D., Neshev, D.N., Sukhorukov, A.A.: Enhanced generation of nondegenerate photon pairs in nonlinear metasurfaces. Adv. Photonics 3(5), 055001 (2021)

    Article  ADS  Google Scholar 

  23. Ai, D., Ma, Y., Liu, M., Zhang, Z., Cao, G., Li, H., Wang, L., Si, P., Shen, J., Zhou, B.: Morphology analysis of tracks in the aerogels impacted by hypervelocity irregular particles. High Power Laser Sci. Eng. 9(2), 02000e14 (2021)

    Google Scholar 

  24. Ebert, T., Heber, R., Abel, T., Bieker, J., Schaumann, G., Roth, M.: Targets with cone-shaped microstructures from various materials for enhanced high-intensity laser–matter interaction. High Power Laser Sci. Eng. 9(2), 02000e24 (2021)

    Google Scholar 

  25. Xie, X., Deng, Y., Johnson, S.L.: Compact and robust supercontinuum generation and post-compression using multiple thin plates. High Power Laser Sci. Eng. 9(4), 04000e66 (2021)

    Google Scholar 

  26. Zhang, J., Zhang, H., Yang, W., Chen, K., Wei, X., Feng, Y., Jin, R., Zhu, W.: Dynamic scattering steering with graphene-based coding meta-mirror. Adv. Opt. Mater. 8, 2000683 (2020)

    Article  Google Scholar 

  27. Bai, X., Kong, F., Sun, Y., Wang, F., Qian, J., Li, X., Cao, A., He, C., Liang, X., Jin, R., Zhu, W.: High-efficiency transmissive programmable metasurface for multi-mode OAM generations. Adv. Opt. Mater. 8, 2000570 (2020)

    Article  Google Scholar 

  28. Jing, X., Gui, X., Zhou, P., Hong, Z.: Physical explanation of Fabry-Pérot cavity for broadband bilayer metamaterials polarization converter. J. Lightwave Technol. 36(12), 2322–2327 (2018)

    Article  ADS  Google Scholar 

  29. Xia, R., Jing, X., Gui, X., Tian, Y.: Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials. Opt. Mater. Express 7(3), 977–988 (2017)

    Article  ADS  Google Scholar 

  30. Akram, M.R., Mehmood, M.Q., Bai, X., Jin, R., Premaratne, M., Zhu, W.: High efficiency ultra-thin transmissive metasurfaces. Adv. Opt. Mater. 7, 1801628 (2019)

    Article  Google Scholar 

  31. Della Giovampaola, C., Engheta, N.: Digital metamaterials. Nat. Mater. 13(12), 1115–1121 (2014)

    Article  ADS  Google Scholar 

  32. Akram, M.R., Bai, X., Jin, R., Vandenbosch, G.A.E., Premaratne, M., Zhu, W.: Photon spin Hall effect based ultra-thin transmissive metasurface for efficient generation of OAM waves. IEEE Trans. Antennas Propag. 67(7), 4650–4658 (2019)

    Article  ADS  Google Scholar 

  33. Zhao, J., Jing, X., Wang, W., Tian, Y., Zhu, D., Shi, G.: Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region. Opt. Laser Technol. 95, 56–62 (2017)

    Article  ADS  Google Scholar 

  34. Tian, Y., Jing, X., Gan, H., Li, X., Hong, Z.: Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces. Front. Phys. 15, 62502 (2020)

    Article  ADS  Google Scholar 

  35. Zhou, C., Mou, Z., Bao, R., Li, Z., Teng, S.: Compound plasmonic vortex generation based on spiral nanoslits. Front. Phys. 16, 33503 (2021)

    Article  ADS  Google Scholar 

  36. Dai, G.: Designing nonlinear thermal devices and metamaterials under the Fourier law: A route to nonlinear thermotics. Front. Phys. 16, 53301 (2021)

    Article  ADS  Google Scholar 

  37. Lan, L., Gao, Y., Fan, X., Li, M., Hao, Q., Qiu, T.: The origin of ultrasensitive SERS sensing beyond plasmonics. Front. Phys. 16, 43300 (2021)

    Article  ADS  Google Scholar 

  38. Li, J., Jin, R., Geng, J., Liang, X., Wang, K., Premaratne, M., Zhu, W.: Design of a broadband metasurface Luneburg lens for full-angle operation. IEEE Trans. Antennas Propag. 67(4), 2442–2451 (2019)

    Article  ADS  Google Scholar 

  39. Lu, X., Zeng, X., Lv, H., Han, Y., Mou, Z., Liu, C., Wang, S., Teng, S.: Polarization controllable plasmonic focusing based on nanometer holes. Nanotechnology 31, 135201 (2020)

    Article  ADS  Google Scholar 

  40. Lv, H., Lu, X., Han, Y., Mou, Z., Zhou, C., Wang, S., Teng, S.: Metasurface cylindrical vector light generators based on nanometer holes. New J. Phys. 21, 123047 (2019)

    Article  Google Scholar 

  41. Cui, T.J., Qi, M.Q., Wan, X., et al.: Coding metamaterials, digital metamaterials and programmable metamaterials. Light 3(10), e218 (2014)

    Article  Google Scholar 

  42. Fang, B., Feng, D., Chen, P., et al.: Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region. Front. Phys. 17, 53502 (2022)

    Article  ADS  Google Scholar 

  43. Li, J., Wang, G., Yue, Z., et al.: Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron. Adv. 5, 210062 (2022)

    Article  Google Scholar 

  44. Li, J., Li, J., Zheng, C., et al.: Free switch between bound states in the continuum (BIC) and quasi-BIC supported by graphene-metal terahertz metasurfaces. Carbon 182, 506–515 (2021)

    Article  Google Scholar 

  45. Li, J., Li, J., Zheng, C., et al.: Dynamic control of reflective chiral terahertz metasurface with a new application developing in full grayscale near field imaging. Carbon 172, 189–199 (2021)

    Article  Google Scholar 

  46. Li, J., Li, J., Zheng, C., Yue, Z., et al.: Spectral amplitude modulation and dynamic near-field displaying of all-silicon terahertz metasurfaces supporting bound states in the continuum. Appl. Phys. Lett. 119, 241105 (2021)

    Article  ADS  Google Scholar 

  47. Li, J., Li, J., Zheng, C., et al.: Active controllable spin-selective terahertz asymmetric transmission based on all-silicon metasurfaces. Appl. Phys. Lett. 118, 221110 (2021)

    Article  ADS  Google Scholar 

  48. Liu, S., Cui, T.J., Xu, Q., et al.: Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light 5(5), 16076 (2016)

    Article  Google Scholar 

  49. Wu, R.Y., Shi, C.B., Liu, S., et al.: Addition theorem for digital coding metamaterials. Adv. Opt. Mater. 6(5), 1701236 (2018)

    Article  Google Scholar 

  50. Li, S.-H., Li, J.-S.: Frequency coding metasurface for multiple directions manipulation of terahertz energy radiation. AIP Adv. 9(3), 035146 (2019)

    Article  ADS  Google Scholar 

  51. Liu, S., Cui, T.J., Zhang, L., et al.: Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams. Adv. Sci. 3, 1600156 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Dr. Xufeng Jing for his help in the writing and revision of the paper.

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Contributions

Junling Han wrote the entire paper.

Corresponding author

Correspondence to Junling Han.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical approval

Our research does not address ethical issues in animals or humans.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J. Controlling the transmission angle of terahertz waves based on polarization-sensitive encoded metagrating metamaterials. Opt Rev 30, 61–72 (2023). https://doi.org/10.1007/s10043-022-00784-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00784-7

Keywords

Navigation