Skip to main content
Log in

Sandwich nano-fin to reduce the aspect ratio requirement of metasurface

  • Special Section: Regular Paper
  • The 13th International Conference on Optics-Photonics Design & Fabrication (ODF’22), Sapporo, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

The current high-aspect-ratio Pancharatnam–Berry (PB)-phase metasurfaces in which vertical dimensions are much larger than the lateral dimensions are challenging to fabricate. Therefore, reducing the aspect ratio requirement has become a research priority. We propose a sandwich nano-fin consisting of GaN/amorphous silicon (a-Si)/GaN on a silica substrate to reduce the strict aspect ratio requirement of current PB-phase metasurfaces. The phase modulation ability and polarization conversion efficiency (PCE) of sandwich nano-fins were investigated. Compared with a conventional GaN nano-fin, the aspect ratio of sandwich nano-fin decreased from 6 to 4 under the same geometric dimension. The PCE of the sandwich nano-fin was up to 68.27%, 1.5 times higher than that of a GaN nano-fin under the same aspect ratio of 4. Moreover, after adding the a-Si layer, the overall PCE improved from 32.17 to 40.54% for the sandwich nano-fin. The sandwich structure simultaneously reduces the challenge of manufacturing and improves efficiency compared to current PB-phase metasurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. Park, C.S., Shrestha, V.R., Yue, W.J., Gao, S.: Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks. Sci Rep 7(1), 1–9 (2017)

    Google Scholar 

  2. Ye, M., Sun, L.B., Hu, X.L., Shi, B.: Angle-insensitive plasmonic color filters with randomly distributed silver nanodisks. Opt Lett 40(21), 4979–4982 (2015)

    Article  ADS  Google Scholar 

  3. Wang, C.-M., Yu, C.-Y., Lin, S.-F., Hsu, C.-L.: Angular-insensitive optical filtering based on meta-GMR. Opt Express 28, 18018–18026 (2020)

    Article  ADS  Google Scholar 

  4. Tsai, W.-Y., Chung, T.L., Hsiao, H.-H., Chen, J.-W.: Second harmonic light manipulation with vertical split ring resonators. Adv Mater. 31, 1806479 (2019)

    Article  Google Scholar 

  5. Liu, G.-Y., Hsu, W.-L., Pan, J.-W., Wang, C.-M.: Refractive and meta-optics hybrid system. J Light Technol 39, 6880–6885 (2021)

    Article  Google Scholar 

  6. Wu, P.C., Chen, J.-W., Yin, C.-W., Lai, Y.-C.: Visible metasurfaces for on-chip polarimetry. ACS Photonics 5, 2568 (2018)

    Article  Google Scholar 

  7. Zheng, C.L., Li, J., Wang, G.C., Wang, S.L.: Fine manipulation of terahertz waves via all-silicon metasurfaces with an independent amplitude and phase. Nanoscale 13, 5809–5816 (2021)

    Article  Google Scholar 

  8. Xu, D., Yang, H., Xu, W., Zhang, W.: Inverse design of Pancharatnam–Berry phase metasurfaces for all-optical image edge detection. Appl Phys Lett 120, 241101 (2022)

    Article  ADS  Google Scholar 

  9. Pfeiffer, C., Emani, N.K., Shaltout, A.M., Boltasseva, A.: Efficient light bending with isotropic metamaterial huygens’ surfaces. Nano Lett 14, 2491–2497 (2014)

    Article  ADS  Google Scholar 

  10. Wu, Y., Kang, L., Bao, H., Werner, D.H.: Exploiting topological properties of mie-resonance-based hybrid metasurfaces for ultrafast switching of light polarization. ACS Photonics 7, 2362–2373 (2020)

    Article  Google Scholar 

  11. Benea-Chelmus, I.C., Mason, S., Meretska, M.L., Elder, D.L.: Gigahertz free-space electro-optic modulators based on Mie resonances. Nat Commun 13, 3170 (2022)

    Article  ADS  Google Scholar 

  12. Arbabi, A., Horie, Y., Ball, A.J., Bagheri, M.: Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun 6, 7069 (2015)

    Article  ADS  Google Scholar 

  13. She, A., Zhang, S., Shian, S., Clarke, D.R.: Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci Adv 4, eaap9957 (2018)

    Article  ADS  Google Scholar 

  14. Khorasaninejad, M., Chen, W.T., Devlin, R.C., Oh, J.: Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016)

    Article  ADS  Google Scholar 

  15. Qin, F.F., Liu, Z.Z., Zhang, Z., Zhang, Q.: Broadband full-color multichannel hologram with geometric metasurface. Opt Express 26, 11577–11586 (2018)

    Article  ADS  Google Scholar 

  16. Biener, G., Niv, A., Kleiner, V., Hasman, E.: Formation of helical beams by use of Pancharatnam–Berry phase optical elements. Opt Lett 27, 1875–1877 (2002)

    Article  ADS  Google Scholar 

  17. Berry, M.V.: The adiabatic phase and Pancharatnam’s phase for polarized light. J Mod Opt 34, 1401–1407 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Li, M., Liu, M., Chen, Y., Hu, Z.-D.: All-dielectric metasurface lenses for achromatic imaging applications. Nanoscale Res Lett 17, 81 (2022)

    Article  ADS  Google Scholar 

  19. Matsudo, B.R., Sain, B., Carletti, L., Zhang, X.: Efficient frequency conversion with geometric phase control in optical metasurfaces. Adv Science 9, 12 (2022)

    Google Scholar 

  20. Sun, Z.S., Yang, K., Mao, R., Lin, Y.: Constant polarization generation metasurface for arbitrarily polarized light. Nanoscale 14, 9061–9067 (2022)

    Article  Google Scholar 

  21. Chen, B.H., Wu, P.C., Su, V.C., Lai, Y.C.: GaN metalens for pixel-level full-color routing at visible light. Nano Lett 17, 6345–6352 (2017)

    Article  ADS  Google Scholar 

  22. Chen, Y.-C., Zeng, Q.-C., Yu, C.-Y., Wang, C.-M.: A General case of the overall phase modulation through a dielectric PB-phase metasurface. OSA Continuum 4, 3204–3212 (2021)

    Article  Google Scholar 

  23. Li, L., Liu, Z.X., Ren, X.F., Wang, S.M.: Metalens-array-based high-dimensional and multiphoton quantum source. Science 368, 1487–1490 (2020)

    Article  ADS  Google Scholar 

  24. Song, Q.H., Baroni, A., Sawant, R., Ni, P.: Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces. Nat Commun 11, 2651 (2020)

    Article  ADS  Google Scholar 

  25. Hu, Y.Q., Li, L., Wang, Y.J., Meng, M.: Trichromatic and tripolarization–channel holography with noninterleaved dielectric metasurface,". Nano Lett 20, 994–1002 (2020)

    Article  ADS  Google Scholar 

  26. Emani, N.K., Khaidarov, E., Paniagua-Dominguez, R., Fu, Y.H.: High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths. Appl Phys Lett 111, 22 (2017)

    Article  Google Scholar 

  27. Hsu, W.-L., Chen, Y.C., Yeh, S.P., Zeng, Q.C.: Review of metasurfaces and metadevices: advantages of different materials and fabrications. Nanomaterials 12, 12 (2022)

    Article  Google Scholar 

  28. Lin, R.J., Su, V.C., Wang, S., Chen, M.K.: Achromatic metalens array for full-colour light-field imaging. Nat Nanotechnol 14, 227–231 (2019)

    Article  ADS  Google Scholar 

  29. Kawashima, T., Yoshikawa, H., Adachi, S., Fuke, S.: Optical properties of hexagonal GaN. J Appl Phys 82, 3528–3535 (1997)

    Article  ADS  Google Scholar 

  30. Pierce, D.T., Spicer, W.E.: Electronic structure of amorphous si from photoemission and optical studies. Phys Rev B 5, 3017 (1972)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from the Ministry of Science and Technology, Taiwan (grant no. Grant Nos. MOST 110-2124-M-008-002 and 110-2221-E-008-060-MY3).

Funding

This study was supported by Ministry of Science and Technology, Taiwan (Grant Nos. MOST 110-2124-M-008-002 and 110-2221-E-008-060-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Ming Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, WL., Yu, CY., Lai, HT. et al. Sandwich nano-fin to reduce the aspect ratio requirement of metasurface. Opt Rev 30, 134–140 (2023). https://doi.org/10.1007/s10043-022-00782-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00782-9

Keywords

Navigation