Skip to main content
Log in

Do observers use their own interpupillary distance in disparity scaling?

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

This study investigated whether the individual difference in the observer’s interpupillary distance (IPD) could cause the individual difference in perceived depth in binocular stereopsis. The horizontal retinal disparity (HRD) is one of the most potent depth cues, but the visual system could not uniquely estimate the metric depth from HRD alone. This is because the size of HRD is determined as a function not only of the size of external depth but also of the viewing distance and IPD. Thus to perceive depth veridically from HRD, observers need to adjust the scaling gain (i.e. the magnification factor when converting HRD to perceived depth), taking their IPD into account. To investigate whether the visual system performs such gain calibration, we examined the relationship between IPD size and perceived depth when observing stereograms (i.e. the visual stimulus of fixed HRD) at a fixed viewing distance with 54 observers. The results showed a significant correlation between perceived depth and IPD. This is consistent with the prediction based on the geometric relationship between depth, HRD, IPD, and viewing distance, suggesting that the visual system does calibrate the scaling gain based on the observer’s IPD. However, the measured results did not fully agree with the predictions from the geometry. The results were discussed, focusing on the errors in the estimation of scaling distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets are available from the author upon reasonable request.

References

  1. Howard, I.P., Rogers, B.J.: Seeing in depth: depth perception, vol. 2. University of Toronto Press, Toronto (2002)

    Google Scholar 

  2. Wheatstone, C.: XVIII. Contributions to the physiology of vision—Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philos. Trans. R. Soc. Lond. 128, 371–394 (1838)

    ADS  Google Scholar 

  3. Ono, H., Comerford, T.: Stereoscopic depth constancy in visual perception: mechanisms and processes. In: Epstein, W. (ed.) Stability and constancy in visual perception. Wiley, Ney York (1977)

    Google Scholar 

  4. Wallach, H., Zuckerman, C.: The constancy of stereoscopic depth. Am. J. Psychol. 76, 404–412 (1963)

    Article  Google Scholar 

  5. Bradshaw, M.F., Glennerster, A., Rogers, B.J.: The effect of display size on disparity scaling from differential perspective and vergence cues. Vis. Res. 36, 1255–1264 (1996)

    Article  Google Scholar 

  6. Brenner, E., van Damme, W.J.: Perceived distance, shape and size. Vis. Res. 39, 975–986 (1999)

    Article  Google Scholar 

  7. Collett, T.S., Schwarz, U., Sobel, E.C.: The interaction of oculomotor cues and stimulus size in stereoscopic depth constancy. Perception 20, 733–754 (1991)

    Article  Google Scholar 

  8. Foley, J.: Binocular distance perception. Psychol. Rev. 87, 411–434 (1980)

    Article  Google Scholar 

  9. Glennerster, A., Rogers, B.J., Bradshaw, M.F.: Cues to viewing distance for stereoscopic depth constancy. Perception 27, 1357–1365 (1998)

    Article  Google Scholar 

  10. Mayhew, J.E., Longuet-Higgins, H.C.: A computational model of binocular depth perception. Nature 297, 376–378 (1982)

    Article  ADS  Google Scholar 

  11. Rogers, B.J., Bradshaw, M.F.: Vertical disparities, differential perspective and binocular stereopsis. Nature 361, 253–255 (1993)

    Article  ADS  Google Scholar 

  12. Cumming, B.G., Johnston, E.B., Parker, A.J.: Vertical disparities and perception of three-dimensional shape. Nature 349, 411–413 (1991)

    Article  ADS  Google Scholar 

  13. O’leary, A., Wallach, H.: Familiar size and linear perspective as distance cues in stereoscopic depth constancy. Percept. Psychophys. 27, 131–135 (1980)

    Article  Google Scholar 

  14. Predebon, J.: The familiar-size cue to distance and stereoscopic depth perception. Perception 22, 985–995 (1993)

    Article  Google Scholar 

  15. Watt, S.J., Akeley, K., Ernst, M.O., Banks, M.S.: Focus cues affect perceived depth. J. Vis. (2005). https://doi.org/10.1167/5.10.7

    Article  Google Scholar 

  16. Glennerster, A., Rogers, B.J., Bradshaw, M.F.: Stereoscopic depth constancy depends on the subject’s task. Vis. Res. 36, 3441–3456 (1996)

    Article  Google Scholar 

  17. Johnston, E.B.: Systematic distortions of shape from stereopsis. Vis. Res. 31, 1351–1360 (1991)

    Article  Google Scholar 

  18. Johnston, E.B., Cumming, B.G., Parker, A.J.: Integration of depth modules: stereopsis and texture. Vis. Res. 33, 813–826 (1993)

    Article  Google Scholar 

  19. Dodgson, N.A.: Variation and extrema of human interpupillary distance. Proc. SPIE Int. Soc. Opt. Eng. 5291, 36–46 (2004)

    ADS  Google Scholar 

  20. MacLachlan, C., Howland, H.C.: Normal values and standard deviations for pupil diameter and interpupillary distance in subjects aged 1 month to 19 years. Ophthalmic Physiol. Opt. 22, 175–182 (2002)

    Article  Google Scholar 

  21. Moravej, R., Sahihalnasab, S.S.: Evaluating the pupillary distance in an Iranian population and its relation with age, sex and refractive errors. J. Ophthalmic Optometr. Sci. 1, 17–22 (2017)

    Google Scholar 

  22. Bosten, J.M., Goodbourn, P.T., Lawrance-Owen, A.J., Bargary, G., Hogg, R.E., Mollon, J.D.: A population study of binocular function. Vis. Res. 110, 34–50 (2015)

    Article  Google Scholar 

  23. Eom, Y., Song, J.S., Ahn, S.E., Kang, S.Y., Suh, Y.W., Oh, J., Kim, H.M.: Effects of interpupillary distance on stereoacuity: the Frisby Davis distance stereotest versus a 3-dimensional distance stereotest. Jpn. J. Ophthalmol. 57, 486–492 (2013)

    Article  Google Scholar 

  24. Shafiee, D., Jafari, A.R., Shafiee, A.A.: Correlation between interpupillary distance and stereo acuity. Bull. Environ. Pharmacol. Life Sci. 3, 26–33 (2014)

    Google Scholar 

  25. Guan, P., Banks, M.S.: Stereoscopic depth constancy. Philos. Trans. R. Soc. Lond. B Biol. Sci. (2016). https://doi.org/10.1098/rstb.2015.0253

    Article  Google Scholar 

  26. Hibbard, P.B., Bradshaw, M.F., Langley, K., Rogers, B.J.: The stereoscopic anisotropy: individual differences and underlying mechanisms. J. Exp. Psychol. Hum. Percept. Perform. 28, 469–476 (2002)

    Article  Google Scholar 

  27. Rogers, B.J., Bradshaw, M.F.: Disparity scaling and the perception of frontoparallel surfaces. Perception 24, 155–179 (1995)

    Article  Google Scholar 

  28. Kaneko, H.: Does the human visual system know the geometry of space? J. Inst. Image Inform. Telev. Eng. 60, 1239–1243 (2006). ((in Japanese))

    Google Scholar 

  29. Hoffman, D.M., Girshick, A.R., Akeley, K., Banks, M.S.: Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. (2008). https://doi.org/10.1167/8.3.33

    Article  Google Scholar 

  30. Sato, M., Miki, A., Tamada, Y., Kaneko, H.: Modified hexagon dot stereo test: precision and accuracy of stereopsis. Jpn. J. Vis. Sci. 38, 122–127 (2017). ((in Japanese))

    Google Scholar 

  31. Adams, W.J., Graf, E.W., Ernst, M.O.: Experience can change the ‘light-from-above’ prior. Nat. Neurosci. 7, 1057–1058 (2004)

    Article  Google Scholar 

  32. Ernst, M.O., Banks, M.S., Bülthoff, H.H.: Touch can change visual slant perception. Nat. Neurosci. 3, 69–73 (2000)

    Article  Google Scholar 

  33. Knill, D.C.: Learning Bayesian priors for depth perception. J. Vis. (2007). https://doi.org/10.1167/7.8.13

    Article  Google Scholar 

  34. Epstein, W.: Modification of the disparity-depth relationship as a result of exposure to conflicting cues. Am. J. Psychol. 81, 189–197 (1968)

    Article  Google Scholar 

  35. Epstein, W., Morgan, C.L.: Adaptation to uniocular image magnification: modification of the disparity-depth relationship. Am. J. Psychol. 83, 322–329 (1970)

    Article  Google Scholar 

  36. Taya, S., Sato, M.: Orientation-specific learning of the prior assumption for 3D slant perception. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-29361-2

    Article  Google Scholar 

  37. Wallach, H., Moore, M.E., Davidson, L.: Modification of stereoscopic depth-perception. Am. J. Psychol. 76, 191–204 (1963)

    Article  Google Scholar 

  38. Seydell, A., Knill, D.C., Trommershauser, J.: Adapting internal statistical models for interpreting visual cues to depth. J. Vis. (2010). https://doi.org/10.1167/10.4.1

    Article  Google Scholar 

  39. Adams, W.J., Banks, M.S., van Ee, R.: Adaptation to three-dimensional distortions in human vision. Nat. Neurosci. 4, 1063–1064 (2001)

    Article  Google Scholar 

  40. Epstein, W., Daviess, N.: Modification of depth judgment following exposures to magnification of uniocular image: are changes in perceived absolute distance and registered direction of gaze involved? Percept. Psychophys. 12, 315–317 (1972)

    Article  Google Scholar 

  41. Epstein, W., Morgan-Paap, C.A.: The effect of level of depth processing and degree of informational discrepancy on adaptation to uniocular image magnification. J. Expl. Psychol. 102, 585–594 (1974)

    Article  Google Scholar 

  42. Todd, J.T., Norman, J.F.: The visual perception of 3-D shape from multiple cues: are observers capable of perceiving metric structure? Percept. Psychophys. 65, 31–47 (2003)

    Article  Google Scholar 

  43. Hess, R.F., To, L., Zhou, J., Wang, G., Cooperstock, J.: R: Stereo vision: the haves and have-nots. i-Perception 6(3), 1–5 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by JSPS (Japan Society for the Promotion of Science) KAKENHI, Grant numbers 24830079 and 26870590.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichiro Taya.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taya, S. Do observers use their own interpupillary distance in disparity scaling?. Opt Rev 30, 41–49 (2023). https://doi.org/10.1007/s10043-022-00780-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00780-x

Keywords

Navigation