Skip to main content
Log in

Improvement and optimization of high-precision accelerometer based on first-order diffraction using single-layer grating

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, a high-precision accelerometer based on single-level diffraction of a single grating is optimized and improved. The sensor consists of an optical system displacement measurement system using grating interferometry and a mechanical structural part made of silicon. The sensor is analyzed by finite element analysis (FEA) and strictly coupled wave analysis methods. The optical accelerometer has an optical sensitivity of 2.21%/μm over the entire measurement range, and total sensitivity of system is 424%/g (note: 1 g = 9.8 m/s2) with and a cross sensitivity of 3.21%. Furthermore, the first-order resonant frequency is 35.995 Hz and the linear measurement range is ± 0.0177 g. Compared with other low-frequency sensors, a high-performance accelerometer sensor is realized. And can be applied to high-tech fields such as inertial navigation and guidance system, space ocean gravity distribution measurement, and artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data underlying the results presented in this Letter are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. Kumar Jindal, S., et al.: “Design guidelines for MEMS optical accelerometer based on dependence of sensitivities on diaphragm dimensions.” J Circuit Syst Comput 29, 2050107 (2020)

    Article  Google Scholar 

  2. Fleming, W.J.: Overview of automotive sensors. IEEE Sens. J. 1, 296–308 (2001)

    Article  ADS  Google Scholar 

  3. Judy, J.W.: Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Mater. Struct. 10, 1115–1134 (2001)

    Article  ADS  Google Scholar 

  4. Shaeffer, D.K.: MEMS inertial sensors: a tutorial overview. Commun Mag IEEE. 51, 100–109 (2013)

    Article  Google Scholar 

  5. Huang, K., et al.: High sensitivity sensing system theoretical research base on waveguide-nano DBRs one dimensional photonic crystal microstructure. Optics Commun. 470, 125392 (2020)

    Article  Google Scholar 

  6. Steiner, H., et al.: MOEMS transducer with a non-linear transfer characteristic for static displacement measurement applications on the example of an inclination sensor. Sens Actuators A Phys. 263, 727–732 (2017)

    Article  Google Scholar 

  7. Yuanyuan, W., et al.: Wireless vibration measurement node design based on MEMS sensor. Instrum Technol Sens 1, 110–114 (2017)

    Google Scholar 

  8. D’Alessandro, A., et al.: A review of the capacitive MEMS for seismology. Sensors. 19, 3093 (2019)

    Article  ADS  Google Scholar 

  9. Mostafa, M.Z., et al.: A novel GPS/DVL/MEMS-INS smartphone sensors integrated method to enhance autonomous navigation, guidance and control system of AUSVs based on ADSF Combined Filter. Measurement 146, 590–605 (2019)

    Article  ADS  Google Scholar 

  10. Cook, R.F., et al.: Predicting strength distributions of MEMS structures using flaw size and spatial density. Microsyst Nanoeng 5, 1–12 (2019)

    Article  Google Scholar 

  11. Lu, B., et al.: Shipborne gravimetry in the BalticSea:data processing strategies, crucial findings and preliminary geoid determination tests. J Geodesy. 94, 1059–1071 (2020)

    Google Scholar 

  12. Hassan, M.M., et al.: Two element MIMO antenna with frequency reconfigurable characteristics utilizing RF MEMS for 5G applications. J Electromagn Waves Appl. 34, 1210–1224 (2020)

    Article  ADS  Google Scholar 

  13. Shen, X., et al.: Research on the disc sensitive structure of a micro optoelectromechanical system (MOEMS) resonator gyroscope. Micromachines 10, 264 (2019)

    Article  Google Scholar 

  14. Fleming, W.J.: Overview of automotive sensors. IEEE Sens. J. 1(4), 296–308 (2001)

    Article  ADS  Google Scholar 

  15. Judy, J.W.: Microelectromechanical systems (mems): fabrication, design and applications. Smart Mater. Struct. 10(6), 1115 (2001)

    Article  ADS  Google Scholar 

  16. Shaeffer, D.K.: Mems inertial sensors: a tutorial overview. IEEE Commun. Mag. 51(4), 100–109 (2013)

    Article  Google Scholar 

  17. Nasaban Shotorban, A.K., Jafari, K., et al.: Optical MEMS accelerometer sensor relying on a micro-ring resonator and an elliptical disk. Circuits, Devices Syst. 13, 1102–1106 (2019)

    Article  Google Scholar 

  18. Tormen, M., et al.: MEMS acceleration sensor with remote optical readout for continuous power generator monitoring. Matec Web of Conf. 32, 01003 (2015)

    Article  Google Scholar 

  19. Tadigadapa, S., et al.: Piezoelectric mems sensors: state-of-the-art and perspectives. Meas. Sci. Technol. 20(9), 092001 (2009)

    Article  ADS  Google Scholar 

  20. Amarasinghe, R., Dao, D.V., et al.: Development of miniaturized 6-axis accelerometer utilizing piezoresistive sensing elements. Sens. Actuators, A Phys 134(2), 310–320 (2007)

    Article  Google Scholar 

  21. Xie, H., et al.: V ertical comb-finger capacitive actuation and sensing for cmos-mems. Sens. Actuators, A Phys 95(2–3), 212–221 (2002)

    Article  Google Scholar 

  22. Gholamzadeh, R., Jafari, K., et al.: Design, simulation and fabrication of a mems accelerometer by using sequential and pulsedmode drie processes. J. Micromech. Microeng. 27(1), 015022 (2016)

    Article  Google Scholar 

  23. Tang, D., Zhao, D., et al.: A moems accelerometer based on photoelastic effect. Optik 122(7), 635–638 (2011)

    Article  ADS  Google Scholar 

  24. Ahmed, A., et al.: Design, fabrication, and characterization of SU-8/carbon black nanocomposite based polymer MEMS acceleration sensor. Microsyst. Technol. 26, 2857–2867 (2020)

    Article  Google Scholar 

  25. Soltanian, E., Jafari, K., Abedi, K.: A novel differential optical MEMS accelerometer based on intensity modulation using an optical power splitter. IEEE Sensors J (2019). https://doi.org/10.1109/JSEN.2019.2936752

    Article  Google Scholar 

  26. Sheikhaleh, A., Abedi, K., Jafari, K.: An optical MEMS accelerometer based on a two-dimensional photonic crystal add-drop filter. J Lightwave Technol. (2017). https://doi.org/10.1109/JLT.2017.2706140

    Article  Google Scholar 

  27. Sheikhaleh, A., Abedi, K., Jafari, K.: A proposal for an optical MEMS accelerometer relied on wavelength modulation with one dimensional photonic crystal. J Lightwave Technol. (2016). https://doi.org/10.1109/JLT.2016.2597539

    Article  Google Scholar 

  28. Zhang, D., et al.: Design and assessment of a 6-DOF micro/nanopositioning system. IEEE/ASME Trans. Mechatron. 24, 2097–2107 (2019)

    Article  Google Scholar 

  29. Stievater, T.H., et al.: A microelectromechanically tunable asymmetric Fabry-Perotquantum well modulator at 1.55μm. Opt. Express 16, 16766–16773 (2008)

    Article  ADS  Google Scholar 

  30. Luo, H., Zhang, G., Carley, L.R., et al.: A post-cmos micromachined lateral accelerometer. J. Microelectromech. Syst. 11(3), 188–195 (2002)

    Article  Google Scholar 

  31. Wu, J., Fedder, G.K., et al.: A low-noise low-offset capacitive sensing amplifier for a 50-/spl mu/g//spl radic/hz monolithic cmos mems accelerometer. IEEE J. Solid-State Circuits 39(5), 722–730 (2004)

    Article  ADS  Google Scholar 

  32. Choa, F.S., et al.: High reflectivity 1.55μm InP/InGaAsP Bragg mirror grown by chemical beam epitaxy. Appl Phys Lett. 59, 2820–2822 (1991)

    Article  ADS  Google Scholar 

  33. Ye, Z., et al.: High-power, high-beam-quality spectral beam combination of six narrow-linewidth fiber amplifiers with two transmission diffraction gratings. Appl. Opt. 58, 8339–8343 (2019)

    Article  ADS  Google Scholar 

  34. Lu, Q., et al.: Determination of thermally induced effects and design guidelines of op-tomechanical accelerometers. Meas. Sci. Technol. 28, 1–5 (2017)

    Article  Google Scholar 

  35. Sheikhaleh, A., Abedi, K., Jafari, K., et al.: Micro-optoelectromechanical systems accelerometer based on intensity modulation using a one-dimensional photonic crystal. Appl Opt. 55(32), 8993 (2016)

    Article  ADS  Google Scholar 

  36. Lu, Q., et al.: Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation. Appl. Opt. 54, 4188–4196 (2015)

    Article  ADS  Google Scholar 

  37. Zhao, S., Hou, C., Bai, J., et al.: Nanometer-scale displacement sensor based on phase-sensitive diffraction grating. Appl. Opt. 50(10), 1413–1416 (2011)

    Article  ADS  Google Scholar 

  38. Sheikhaleh, A., Abedi, K., et al.: An optical MEMS accelerometer based on a two-dimensional photonic crystal add-drop filter. J Lightwave Technol. (2017). https://doi.org/10.1109/JLT.2017.2706140

    Article  Google Scholar 

  39. Soltanian, E., Jafari, K., et al.: A novel differential optical MEMS accelerometer based on intensity modulation, using an optical power splitter. IEEE Sens J. 19(24), 12024–12030 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledges the support of 2019 Shanxi Provincial Key R&D Program (High-tech Field) Project 98006511. This research was supported by the Innovative Research Group Project of National Science Foundation of China 51821003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, K. & Cheng, L. Improvement and optimization of high-precision accelerometer based on first-order diffraction using single-layer grating. Opt Rev 30, 17–25 (2023). https://doi.org/10.1007/s10043-022-00777-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00777-6

Keywords

Navigation