Skip to main content
Log in

Finite-time synchronization transmission of signal in erbium-doped laser network

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we propose a novel sliding mode control technique for finite-time synchronization transmission of signal in erbium-doped laser network. First, we introduce the structure of erbium-doped laser network. Then the unique sliding surface and network controller are designed to complete the finite-time synchronization transmission of signal in erbium-doped laser network. Finally, the effectiveness of the finite-time synchronization transmission technique is numerically illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10
Fig.11

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Tumulty, J.S., Royster, M., Cruz, L.: Columnar grouping preserves synchronization in neuronal networks with distance-dependent time delays. Phys. Rev. E 101, 022408 (2020)

    Article  ADS  Google Scholar 

  2. Sarkar, A.: Neural synchronization of optimal structure-based group of neural networks. Neurocomputing 450, 156–167 (2021)

    Article  Google Scholar 

  3. Lü, L., Zou, C.M., Zhang, F.L.: Synchronization control between discrete uncertain networks with different topologies. Int. J. Nonlinear Sci. Numer. Simul. 21, 789–795 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sakthivel, R., Sakthivel, R., Kwon, O.M., Selvaraj, P.: Observer-based synchronization of fractional-order Markovian jump multi-weighted complex dynamical networks subject to actuator faults. J. Franklin Inst. 358, 4602–4625 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Harrison, S.L., Sigurdsson, H., Lagoudakis, P.G.: Synchronization in optically trapped polariton Stuart-Landau networks. Phys. Rev. B 101, 155402 (2020)

    Article  ADS  Google Scholar 

  6. Li, W.L.: Analyzing quantum synchronization through Bohmian trajectories. Phys. Rev. A 106, 023512 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  7. Lü, L., Zou, C.M., Li, C.R., Li, Y., Xu, Y.Q.: Signal transmission and parameter measurement in quantum bits interacting with a single-mode radiation field. Opt. Quant. Electron. 52, 375 (2020)

    Article  Google Scholar 

  8. Lü, L., Zhao, L.N., Li, H.X.: Design of adaptive parameter observer and laser network controller based on sliding mode control technology. Optik 257, 168790 (2022)

    Article  ADS  Google Scholar 

  9. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109–2112 (1998)

    Article  ADS  Google Scholar 

  10. Belykh, V.N., Belykh, I.V., Hasler, M.: Connection graph stability method for synchronized coupled chaotic systems. Physica D 195, 159–187 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bazhanova, M.V., Krylova, N.P., Kazantsev, V.B., Khramov, A.E., Lobov, S.A.: Synchronization in a network of spiking neural oscillators with plastic connectivity. Radiophys. Quantum Electron. 63, 298–309 (2020)

    Article  ADS  Google Scholar 

  12. Urdapilleta, E.: Transition to synchronization in heterogeneous inhibitory neural networks with structured synapses. Chaos 31, 033151 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  13. Zanotto, F.M., Steinbock, O.: Asymmetric synchronization in lattices of pinned spiral waves. Phys. Rev. E 103, 022213 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  14. DeLellis, P., Garofalo, F., Lo, I.F.: The partial pinning control strategy for large complex networks. Automatica 89, 111–116 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Medeiros, E.S., Medrano-T, R.O., Caldas, I.L., Feudel, U.: The impact of chaotic saddles on the synchronization of complex networks of discrete-time units. J. Phys. Complex. 2, 035002 (2021)

    Article  ADS  Google Scholar 

  16. Lü, L., Zhang, F.L., Sun, A.: Synchronization between uncertain spatiotemporal networks based on open-loop and closed-loop coupling technology. Physica A 526, 120712 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghaffari, A., Arebi, S.: Pinning control for synchronization of nonlinear complex dynamical network with suboptimal SDRE controllers. Nonlinear Dyn. 83, 1003–1013 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Roy, A., Misra, A.P., Banerjee, S.: Synchronization in networks of coupled hyperchaotic CO2 lasers. Phys. Scr. 95, 045225 (2020)

    Article  ADS  Google Scholar 

  19. Khan, N., Salleh, R.B., Ali, I., Khan, Z., Bin, R.: Enabling reachability across multiple domains without controller synchronization in SDN. Comput. Mater. Continu. 69, 945–965 (2021)

    Article  Google Scholar 

  20. Lü, L., Li, C.R., Li, G., Zhao, G.N.: Cluster synchronization transmission of laser pattern signal in laser network with ring cavity (in Chinese). Sci. Sin.-Phys. Mech. Astron. 47, 080501 (2017)

    Article  Google Scholar 

  21. Skardal, P.S., Taylor, D., Sun, J., Arenas, A.: Erosion of synchronization in networks of coupled oscillators. Phys. Rev. E 91, 010802 (2015)

    Article  ADS  Google Scholar 

  22. Rodrigues, K.L., Dickman, R.: Synchronization of discrete oscillators on ring lattices and small-world networks. J. Stat. Mech. 2020, 043406 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mahmoud, G.M., Aboelenen, T., Abed-Elhameed, T.M., Farghaly, A.A.: On boundedness and projective synchronization of distributed order neural networks. Appl. Math. Comput. 404, 126198 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Lü, L., Li, C.R., Li, G., Zhao, G.N.: Projective synchronization for uncertain network based on modified sliding mode control technique. Int. J. Adapt. Control Signal Process. 31, 429–440 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lodi, M., Sorrentino, F., Storace, M.: One-way dependent clusters and stability of cluster synchronization in directed networks. Nat. Commun. 12, 4073 (2021)

    Article  ADS  Google Scholar 

  26. Siddique, A.B., Pecora, L., Hart, J.D., Sorrentino, F.: Symmetry-and input-cluster synchronization in networks. Phys. Rev. E 97, 042217 (2018)

    Article  ADS  Google Scholar 

  27. Das, P., Das, P., Kundu, A.: Delayed feedback controller based finite-time synchronization of discontinuous neural networks with mixed time-varying delays. Neural Process. Lett. 49, 693–709 (2019)

    Article  Google Scholar 

  28. Saravanan, S., Syed Ali, M., Saravanakumar, R.: Finite-time non-fragile dissipative stabilization of delayed neural networks. Neural Process. Lett. 49, 573–591 (2019)

    Article  Google Scholar 

  29. Zhou, S., Hong, Y.X., Yang, Y.M., Lü, L., Li, C.R.: Finite-time synchronization of uncertain delay spatiotemporal networks via unidirectional coupling technology. Pramana J. Phys. 94, 34 (2020)

    Article  ADS  Google Scholar 

  30. Suarez, O.J., Vega, C.J., Sanchez, E.N., Chen, G.R., Elvira-Ceja, J.S., Rodriguez, D.I.: Neural sliding-mode pinning control for output synchronization for uncertain general complex networks. Automatica 112, 108694 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Aouiti, C., Hui, Q., Jallouli, H., Moulay, E.: Sliding mode control-based fixed-time stabilization and synchronization of inertial neural networks with time-varying delays. Neural Comput. Appl. 33, 11555–11572 (2021)

    Article  Google Scholar 

  32. Haken H. Light, New York, 1985

  33. Zhang, L.W., Shao, M.: Chaotic synchronization with single-ring erbium-doped fiber laser systems. Int. Conf. Comput. Intell. Secur. (2010). https://doi.org/10.1109/CIS.2010.101

    Article  Google Scholar 

  34. Luo, L.G., Tee, T.J., Chu, P.L.: Chaotic behavior in erbium-doped fiber-ring lasers. J. Opt. Soc. Am. B 15, 972–978 (1998)

    Article  ADS  Google Scholar 

  35. Yu, X.H., Man, Z.H.: Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49, 261–264 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Mobayen, S., Majd, V.J., Sojoodi, M.: An LMI-based composite nonlinear feedback terminal sliding-mode controller design for disturbed MIMO systems. Math. Comput. Simul. 85, 1–10 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 11747318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Lü.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, L., Wei, Q. Finite-time synchronization transmission of signal in erbium-doped laser network. Opt Rev 30, 1–8 (2023). https://doi.org/10.1007/s10043-022-00774-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00774-9

Keywords

Navigation