Skip to main content
Log in

Coherent diffraction imaging through shift-invariant scattering

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, we present a method for single-shot phase imaging with a wide field of view based on coherent diffraction imaging. Coherent diffraction imaging can be implemented by compact optical hardware without any interferometric measurement, but one issue is a severely limited field of view. Although this limited field of view is extendable by introducing random optical processes, this solution increases the costs of optical hardware and computations. To solve this issue, we utilize a shift-invariant scattering process in coherent diffraction imaging. This optical process is implemented by inserting a scattering plate on the pupil plane in an imaging system. In the proposed method, a complex amplitude object is illuminated with coherent light, and a single diffraction intensity image from the object is captured through the convolution of the scattering point spread function, which is probed in advance. The object field is reconstructed from the captured intensity image based on the ptychographical iterative engine, taking into account the randomized convolution process. The proposed method is numerically analyzed and experimentally demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bhaduri, B., Edwards, C., Pham, H., Zhou, R., Nguyen, T.H., Goddard, L.L., Popescu, G.: Diffraction phase microscopy: principles and applications in materials and life sciences. Adv. Opt. Photon. 6, 57–119 (2014)

    Article  Google Scholar 

  2. Park, Y., Depeursinge, C., Popescu, G.: Quantitative phase imaging in biomedicine. Nat. Photonics 12, 578–589 (2018)

    Article  ADS  Google Scholar 

  3. Jo, Y., Cho, H., Lee, S.Y., Choi, G., Kim, G., Min, H.-S., Park, Y.: Quantitative phase imaging and artificial intelligence: a review. IEEE J. Sel. Top. Quantum Electron. 25, 1–14 (2019)

    Article  Google Scholar 

  4. Goodman, J., Lawrence, R.: Digital image formation from electronically detected holograms. Appl. Phys. Lett. 11, 77–79 (1967)

    Article  ADS  Google Scholar 

  5. Nehmetallah, G., Banerjee, P.P.: Applications of digital and analog holography in three-dimensional imaging. Adv. Opt. Photon. 4, 472–553 (2012)

    Article  Google Scholar 

  6. Osten, W., Faridian, A., Gao, P., Körner, K., Naik, D., Pedrini, G., Singh, A.K., Takeda, M., Wilke, M.: Recent advances in digital holography. Appl. Opt. 53, G44–G63 (2014)

    Article  Google Scholar 

  7. Marquet, P., Depeursinge, C., Magistretti, P.J.: Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders. Neurophotonics 1, 20901 (2014)

    Article  Google Scholar 

  8. Javidi, B., Carnicer, A., Anand, A., Barbastathis, G., Chen, W., Ferraro, P., Goodman, J.W., Horisaki, R., Khare, K., Kujawinska, M., Leitgeb, R.A., Marquet, P., Nomura, T., Ozcan, A., Park, Y., Pedrini, G., Picart, P., Rosen, J., Saavedra, G., Shaked, N.T., Stern, A., Tajahuerce, E., Tian, L., Wetzstein, G., Yamaguchi, M.: Roadmap on digital holography. Opt. Express 29, 35078–35118 (2021)

    Article  ADS  Google Scholar 

  9. Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982)

    Article  ADS  Google Scholar 

  10. Miao, J., Charalambous, P., Kirz, J., Sayre, D.: Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999)

    Article  ADS  Google Scholar 

  11. Chapman, H.N., Nugent, K.A.: Coherent lensless X-ray imaging. Nat. Photonics 4, 833–839 (2010)

    Article  ADS  Google Scholar 

  12. Kimura, T., Joti, Y., Shibuya, A., Song, C., Kim, S., Tono, K., Yabashi, M., Tamakoshi, M., Moriya, T., Oshima, T., Ishikawa, T., Bessho, Y., Nishino, Y.: Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nat. Commun. 5, 3052 (2014)

    Article  ADS  Google Scholar 

  13. Miao, J., Ishikawa, T., Robinson, I.K., Murnane, M.M.: Beyond crystallography: diffractive imaging using coherent x-ray light sources. Science 348, 530–535 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Thibault, P., Dierolf, M., Menzel, A., Bunk, O., David, C., Pfeiffer, F.: High-resolution scanning X-ray diffraction microscopy. Science 321, 379–382 (2008)

    Article  ADS  Google Scholar 

  15. Holler, M., Guizar-Sicairos, M., Tsai, E.H.R., Dinapoli, R., Müller, E., Bunk, O., Raabe, J., Aeppli, G.: High-resolution non-destructive three-dimensional imaging of integrated circuits. Nature 543, 402–406 (2017)

    Article  ADS  Google Scholar 

  16. Pfeiffer, F.: X-ray ptychography. Nat. Photonics 12, 9–17 (2018)

    Article  ADS  Google Scholar 

  17. Maiden, A., Morrison, G., Kaulich, B., Gianoncelli, A., Rodenburg, J.: Soft X-ray spectromicroscopy using ptychography with randomly phased illumination. Nat. Commun. 4, 1669 (2013)

    Article  ADS  Google Scholar 

  18. Horisaki, R., Ogura, Y., Aino, M., Tanida, J.: Single-shot phase imaging with a coded aperture. Opt. Lett. 39, 6466–6469 (2014)

    Article  ADS  Google Scholar 

  19. Horisaki, R., Egami, R., Tanida, J.: Single-shot phase imaging with randomized light (SPIRaL). Opt. Express 24, 3765–3773 (2016)

    Article  ADS  Google Scholar 

  20. Egami, R., Horisaki, R., Tian, L., Tanida, J.: Relaxation of mask design for single-shot phase imaging with a coded aperture. Appl. Opt. 55, 1830–1837 (2016)

    Article  ADS  Google Scholar 

  21. Rosen, J., de Aguiar, H.B., Anand, V., Baek, Y., Gigan, S., Horisaki, R., Hugonnet, H., Juodkazis, S., Lee, K., Liang, H., Liu, Y., Ludwig, S., Osten, W., Park, Y., Pedrini, G., Sarkar, T., Schindler, J., Singh, A.K., Singh, R.K., Situ, G., Takeda, M., Xie, X., Yang, W., Zhou, J.: Roadmap on chaos-inspired imaging technologies (CI\(^2\)-Tech). Appl. Phys. B 128, 49 (2022)

    Article  ADS  Google Scholar 

  22. Drémeau, A., Liutkus, A., Martina, D., Katz, O., Schülke, C., Krzakala, F., Gigan, S., Daudet, L.: Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express 23, 11898–11911 (2015)

    Article  ADS  Google Scholar 

  23. Popoff, S., Lerosey, G., Fink, M., Boccara, A.C., Gigan, S.: Image transmission through an opaque material. Nat. Commun. 1, 81 (2010)

    Article  ADS  Google Scholar 

  24. Popoff, S.M., Lerosey, G., Carminati, R., Fink, M., Boccara, A.C., Gigan, S.: Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010)

    Article  ADS  Google Scholar 

  25. Popoff, S.M., Lerosey, G., Fink, M., Boccara, A.C., Gigan, S.: Controlling light through optical disordered media: transmission matrix approach. New J. Phys. 13, 123021 (2011)

    Article  ADS  Google Scholar 

  26. Freund, I., Rosenbluh, M., Feng, S.: Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett. 61, 2328–2331 (1988)

    Article  ADS  Google Scholar 

  27. Feng, S., Kane, C., Lee, P.A., Stone, A.D.: Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834–837 (1988)

    Article  ADS  Google Scholar 

  28. Bertolotti, J., van Putten, E.G., Blum, C., Lagendijk, A., Vos, W.L., Mosk, A.P.: Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012)

    Article  ADS  Google Scholar 

  29. Katz, O., Heidmann, P., Fink, M., Gigan, S.: Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics 8, 784–790 (2014)

    Article  ADS  Google Scholar 

  30. Okamoto, Y., Horisaki, R., Tanida, J.: Noninvasive three-dimensional imaging through scattering media by three-dimensional speckle correlation. Opt. Lett. 44, 2526–2529 (2019)

    Article  ADS  Google Scholar 

  31. Ehira, K., Horisaki, R., Nishizaki, Y., Naruse, M., Tanida, J.: Spectral speckle-correlation imaging. Appl. Opt. 60, 2388–2392 (2021)

    Article  ADS  Google Scholar 

  32. Maiden, A.M., Rodenburg, J.M.: An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009)

    Article  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI Grant Numbers JP20H02657, JP20K05361, and JP20H05890.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoichi Horisaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horisaki, R., Yamazaki, K., Nishizaki, Y. et al. Coherent diffraction imaging through shift-invariant scattering. Opt Rev 29, 504–509 (2022). https://doi.org/10.1007/s10043-022-00769-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00769-6

Keywords

Navigation