Abstract
In this paper, we present a method for single-shot phase imaging with a wide field of view based on coherent diffraction imaging. Coherent diffraction imaging can be implemented by compact optical hardware without any interferometric measurement, but one issue is a severely limited field of view. Although this limited field of view is extendable by introducing random optical processes, this solution increases the costs of optical hardware and computations. To solve this issue, we utilize a shift-invariant scattering process in coherent diffraction imaging. This optical process is implemented by inserting a scattering plate on the pupil plane in an imaging system. In the proposed method, a complex amplitude object is illuminated with coherent light, and a single diffraction intensity image from the object is captured through the convolution of the scattering point spread function, which is probed in advance. The object field is reconstructed from the captured intensity image based on the ptychographical iterative engine, taking into account the randomized convolution process. The proposed method is numerically analyzed and experimentally demonstrated.
This is a preview of subscription content, access via your institution.




References
Bhaduri, B., Edwards, C., Pham, H., Zhou, R., Nguyen, T.H., Goddard, L.L., Popescu, G.: Diffraction phase microscopy: principles and applications in materials and life sciences. Adv. Opt. Photon. 6, 57–119 (2014)
Park, Y., Depeursinge, C., Popescu, G.: Quantitative phase imaging in biomedicine. Nat. Photonics 12, 578–589 (2018)
Jo, Y., Cho, H., Lee, S.Y., Choi, G., Kim, G., Min, H.-S., Park, Y.: Quantitative phase imaging and artificial intelligence: a review. IEEE J. Sel. Top. Quantum Electron. 25, 1–14 (2019)
Goodman, J., Lawrence, R.: Digital image formation from electronically detected holograms. Appl. Phys. Lett. 11, 77–79 (1967)
Nehmetallah, G., Banerjee, P.P.: Applications of digital and analog holography in three-dimensional imaging. Adv. Opt. Photon. 4, 472–553 (2012)
Osten, W., Faridian, A., Gao, P., Körner, K., Naik, D., Pedrini, G., Singh, A.K., Takeda, M., Wilke, M.: Recent advances in digital holography. Appl. Opt. 53, G44–G63 (2014)
Marquet, P., Depeursinge, C., Magistretti, P.J.: Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders. Neurophotonics 1, 20901 (2014)
Javidi, B., Carnicer, A., Anand, A., Barbastathis, G., Chen, W., Ferraro, P., Goodman, J.W., Horisaki, R., Khare, K., Kujawinska, M., Leitgeb, R.A., Marquet, P., Nomura, T., Ozcan, A., Park, Y., Pedrini, G., Picart, P., Rosen, J., Saavedra, G., Shaked, N.T., Stern, A., Tajahuerce, E., Tian, L., Wetzstein, G., Yamaguchi, M.: Roadmap on digital holography. Opt. Express 29, 35078–35118 (2021)
Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982)
Miao, J., Charalambous, P., Kirz, J., Sayre, D.: Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999)
Chapman, H.N., Nugent, K.A.: Coherent lensless X-ray imaging. Nat. Photonics 4, 833–839 (2010)
Kimura, T., Joti, Y., Shibuya, A., Song, C., Kim, S., Tono, K., Yabashi, M., Tamakoshi, M., Moriya, T., Oshima, T., Ishikawa, T., Bessho, Y., Nishino, Y.: Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nat. Commun. 5, 3052 (2014)
Miao, J., Ishikawa, T., Robinson, I.K., Murnane, M.M.: Beyond crystallography: diffractive imaging using coherent x-ray light sources. Science 348, 530–535 (2015)
Thibault, P., Dierolf, M., Menzel, A., Bunk, O., David, C., Pfeiffer, F.: High-resolution scanning X-ray diffraction microscopy. Science 321, 379–382 (2008)
Holler, M., Guizar-Sicairos, M., Tsai, E.H.R., Dinapoli, R., Müller, E., Bunk, O., Raabe, J., Aeppli, G.: High-resolution non-destructive three-dimensional imaging of integrated circuits. Nature 543, 402–406 (2017)
Pfeiffer, F.: X-ray ptychography. Nat. Photonics 12, 9–17 (2018)
Maiden, A., Morrison, G., Kaulich, B., Gianoncelli, A., Rodenburg, J.: Soft X-ray spectromicroscopy using ptychography with randomly phased illumination. Nat. Commun. 4, 1669 (2013)
Horisaki, R., Ogura, Y., Aino, M., Tanida, J.: Single-shot phase imaging with a coded aperture. Opt. Lett. 39, 6466–6469 (2014)
Horisaki, R., Egami, R., Tanida, J.: Single-shot phase imaging with randomized light (SPIRaL). Opt. Express 24, 3765–3773 (2016)
Egami, R., Horisaki, R., Tian, L., Tanida, J.: Relaxation of mask design for single-shot phase imaging with a coded aperture. Appl. Opt. 55, 1830–1837 (2016)
Rosen, J., de Aguiar, H.B., Anand, V., Baek, Y., Gigan, S., Horisaki, R., Hugonnet, H., Juodkazis, S., Lee, K., Liang, H., Liu, Y., Ludwig, S., Osten, W., Park, Y., Pedrini, G., Sarkar, T., Schindler, J., Singh, A.K., Singh, R.K., Situ, G., Takeda, M., Xie, X., Yang, W., Zhou, J.: Roadmap on chaos-inspired imaging technologies (CI\(^2\)-Tech). Appl. Phys. B 128, 49 (2022)
Drémeau, A., Liutkus, A., Martina, D., Katz, O., Schülke, C., Krzakala, F., Gigan, S., Daudet, L.: Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express 23, 11898–11911 (2015)
Popoff, S., Lerosey, G., Fink, M., Boccara, A.C., Gigan, S.: Image transmission through an opaque material. Nat. Commun. 1, 81 (2010)
Popoff, S.M., Lerosey, G., Carminati, R., Fink, M., Boccara, A.C., Gigan, S.: Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010)
Popoff, S.M., Lerosey, G., Fink, M., Boccara, A.C., Gigan, S.: Controlling light through optical disordered media: transmission matrix approach. New J. Phys. 13, 123021 (2011)
Freund, I., Rosenbluh, M., Feng, S.: Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett. 61, 2328–2331 (1988)
Feng, S., Kane, C., Lee, P.A., Stone, A.D.: Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834–837 (1988)
Bertolotti, J., van Putten, E.G., Blum, C., Lagendijk, A., Vos, W.L., Mosk, A.P.: Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012)
Katz, O., Heidmann, P., Fink, M., Gigan, S.: Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics 8, 784–790 (2014)
Okamoto, Y., Horisaki, R., Tanida, J.: Noninvasive three-dimensional imaging through scattering media by three-dimensional speckle correlation. Opt. Lett. 44, 2526–2529 (2019)
Ehira, K., Horisaki, R., Nishizaki, Y., Naruse, M., Tanida, J.: Spectral speckle-correlation imaging. Appl. Opt. 60, 2388–2392 (2021)
Maiden, A.M., Rodenburg, J.M.: An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009)
Funding
This work was supported by JSPS KAKENHI Grant Numbers JP20H02657, JP20K05361, and JP20H05890.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Horisaki, R., Yamazaki, K., Nishizaki, Y. et al. Coherent diffraction imaging through shift-invariant scattering. Opt Rev 29, 504–509 (2022). https://doi.org/10.1007/s10043-022-00769-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10043-022-00769-6
Keywords
- Coherent diffraction imaging
- Computational imaging
- Phase retrieval
- Imaging through scattering media
- Memory effect