Skip to main content

A three-dimensional measurement method for colorful objects based on intensity pre-calibration


Due to color object surface interference, the distortion of captured sinusoidal fringe patterns in a colorful object measurement using fringe projection profilometry causes significant phase error and therefore shape measurement error. To address the problem, an intensity correction method is proposed to correct the acquired nonsinusoidal fringe of color object and aim to improve three-dimensional (3D) reconstruction accuracy. In this paper, first, the look-up tables (LUTs) and multi-fusion matrices (MFM) are established; secondly, finding the optimal indexing value to correct the color fringe pattern for improving recognition rates and sine; finally, the corrected pattern is separated into three phase-shifting fringe patterns, which can obtain demodulation phase by the three-step phase-shifting algorithm and then recover unwrapping phase. The simulation and experimental results demonstrate that the proposed method effectively reduces the phase error of color objects and achieves complete measurement of different color regions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. Song, Z.: Recent progresses on real-time 3d shape measurement using digital fringe projection techniques. Opt. Lasers Eng. 48, 149–158 (2010)

    ADS  Article  Google Scholar 

  2. Zuo, C., Feng, S., Huang, L., Tao, T., Yin, W., Chen, Q.: Phase shifting algorithms for fringe projection profilometry: a review. Opt. Lasers Eng. 109, 23–59 (2018)

    Article  Google Scholar 

  3. Caspi, D., Kiryati, N.: Range imaging with adaptive color structured light. IEEE Trans. Pattern Anal. Mach. Intell. 20, 0–480 (1998)

    Article  Google Scholar 

  4. Song, Z., Yau, S.T.: High dynamic range scanning technique. Proc. SPIE 7066, 033604 (2009)

    Google Scholar 

  5. Huang, Peisen, S.: Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring. Opt. Eng. 38, 1065–1071 (1999)

    ADS  Article  Google Scholar 

  6. Zhang, Z., Towers, C.E., Towers, D.P.: Shape and colour measurement of colourful objects by fringe projection. In: Proceedings of Spie the International Society for Optical Engineering, 7063 (2008)

  7. Ma, K., Zhang, Q.C.: A new method to reduce the influence of object’s color texture in three-dimensional shape measurement. J. Optoelectron. Laser 22, 583–588 (2011)

    Google Scholar 

  8. Chao, C., Nan, G., Xiangjun, W., Zonghua, Z.: Three-dimensional shape measurement of colored objects based on adaptive fringe projection. Acta Opt. Sin. 38, 0815008 (2018)

    Article  Google Scholar 

  9. Wang, J., Zhou, Y., Yang, Y.: Rapid 3d measurement technique for colorful objects employing rgb color light projection. Appl. Opt. 59, 1907–15 (2020)

    ADS  Article  Google Scholar 

  10. Zhang, S.: Absolute phase retrieval methods for digital fringe projection profilometry: a review. Opt. Lasers Eng. 107, 28–37 (2018)

    Article  Google Scholar 

  11. Wust, C., Capson, D.W.: Surface profile measurement using color fringe projection. Mach. Vis. Appl. 4, 193–203 (1991)

    Article  Google Scholar 

  12. Huang, Peisen, S.: High-speed 3-d shape measurement based on digital fringe projection. Opt. Eng. 42, 163–168 (2003)

    ADS  Article  Google Scholar 

  13. Guo, H., He, H., Chen, M.: Gamma correction for digital fringe projection profilometry. Appl. Opt. 43, 2906–2914 (2004)

    ADS  Article  Google Scholar 

  14. Xing, S., Guo, H.: Correction of projector nonlinearity in multi-frequency phase-shifting fringe projection profilometry. Opt. Express 26, 16277 (2018)

    ADS  Article  Google Scholar 

  15. Flores, J.L., Ferrari, J.A., Torales, G.G., Legarda-Saenz, R., Silva, A.: Color-fringe pattern profilometry using a generalized phase-shifting algorithm. Appl. Opt. 54, 8827–8834 (2015)

    ADS  Article  Google Scholar 

  16. Zhang, Z., Xu, Y., Liu, Y., Tam, H.Y., Xu, K., Xiao, H., Zhu, J., Zhao, C.L.: Crosstalk reduction of a color fringe projection system based on multi-frequency heterodyne principle. Proc. SPIE Int. Soc. Opt. Eng. 9046, 47–54 (2013)

    Google Scholar 

  17. Pan, J., Huang, P.S., Chiang, F.P.: Color-encoded digital fringe projection technique for high-speed 3-d shape measurement: color coupling and imbalance compensation. Proc. SPIE Int. Soc. Opt. Eng. 5265, 205–212 (2004)

    ADS  Google Scholar 

  18. Ayubi, G.A., Perciante, C.D., Flores, J.L., Martino, J., Ferrari, J.A.: Generation of phase-shifting algorithms with n arbitrarily spaced phase-steps. Appl. Opt. 53, 7168–7176 (2014)

    ADS  Article  Google Scholar 

  19. Ma, S., Quan, C., Tay, C.J., Zhu, R., Li, B.: Phase error correction for digital fringe projection profilometry. Phys. Proc. 19, 227–232 (2011)

    ADS  Article  Google Scholar 

  20. Je, C., Lee, S.W., Park, R.H.: Color-phase analysis for sinusoidal structured light in rapid range imaging. Comput. Sci. 1, 270–275 (2015)

    Google Scholar 

  21. Ghiglia, D.C., Pritt, M.: Two-dimensional phase unwrapping: theory, algorithms, and software. Wiley (1998)

  22. Su, X., Chen, W.: Reliability-guided phase unwrapping algorithm: a review. Opt. Lasers Eng. 42, 245–261 (2004)

    Article  Google Scholar 

  23. Huntley, J.M., Saldner, H.O.: Temporal phase-unwrapping algorithm for automated interferogram analysis. Appl. Opt. 32, 3047–3052 (1993)

    ADS  Article  Google Scholar 

  24. Zhao, H., Chen, W., Tan, Y.: Phase-unwrapping algorithm for the measurement of three-dimensional object shapes. Appl. Opt. 33, 4497–4500 (1994)

    ADS  Article  Google Scholar 

  25. Ma, S., Zhu, R., Quan, C., Li, B., Tay, C.J., Chen, L.: Blind phase error suppression for color-encoded digital fringe projection profilometry. Opt. Commun. 285, 1662–1668 (2012)

    ADS  Article  Google Scholar 

  26. Georgiou, D.N., Karakasidis, T.E., Nieto, J.J., et al.: Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou’s pseudo amino acid composition. J. Theor. Biol. 257(1), 17–26 (2009)

    ADS  Article  Google Scholar 

  27. Luisier, F., Blu, T., Unser, M.: Image denoising in mixed Poisson–Gaussian noise. IEEE Trans. Image Process. 20, 696–708 (2011)

    ADS  MathSciNet  Article  Google Scholar 

  28. Song, Z., Royer, D., Yau, S.T.: High-resolution real-time 3d absolute coordinates measurement using a fast three-step phase-shifting algorithm. In: Proceedings of SPIE—The International Society for Optical Engineering, pp. 62920M–62920M–10 (2006)

  29. Chen, S., Zhao, J., Xia, R.: Improvement of the phase unwrapping method based on multi-frequency heterodyne principle. Acta Opt. Sin. 36(4) (2016)

Download references


This work was supported in part by the National Key Research and Development Programs of China 2018YFC1603500, and the National Natural Science Foundation of China (NSFC) 61975161.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hong Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Zhao, H. & Gong, Z. A three-dimensional measurement method for colorful objects based on intensity pre-calibration. Opt Rev 29, 343–353 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Three-dimensional measurement
  • Fringe projection
  • Colorful object
  • Intensity correction