Skip to main content
Log in

Generating and converting special focal field patterns in a 4Pi focusing system illuminated by azimuthally polarized vortex beam

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Based on the Richards–Wolf vector diffraction theory, the strong focusing properties of a 4Pi focusing system under the illumination of the azimuthally polarized Laguerre–Gaussian vortex beam, which is modulated by the diffracted optical elements (DOE), are investigated numerically. We mainly study the influence trend of three parameters, which are the ratio (\(\beta\)), the numerical aperture (\(NA\)) of the objective lens and the fourth ring parameter of the DOE, on the focal field in the 4Pi focusing system. The results show that three kinds of focusing patterns (the class optical needle, the flattop optical field and the dark channel) can be obtained according to the influence trend of the three parameters on the focal field. And three focal patterns can be converted by changing three parameters. The conversion between these special focal field patterns has potential application value in the optical micro-control field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen, J., Wan, C., Zhan, Q.: Vectorial optical fields: recent advances and future prospects. Sci Bull. 63(1), 54–74 (2018)

    Article  Google Scholar 

  2. Youngworth, K., Brown, T.: Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7(2), 77–87 (2000)

    Article  ADS  Google Scholar 

  3. Sun, C., Liu, C.: Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation. Opt. Lett. 28(2), 99–101 (2003)

    Article  ADS  Google Scholar 

  4. Grosjean, T., Courjon, D.: Smallest focal spots. Opt. Commun. 272(2), 314–319 (2007)

    Article  ADS  Google Scholar 

  5. Kozawa, Y., Sato, S.: Sharper focal spot formed by higher-order radially polarized laser beams. J. Opt. Soc. Am. A 24(6), 1793–1798 (2007)

    Article  ADS  Google Scholar 

  6. Hao, X., Kuang, C., Wang, T., Liu, X.: Phase encoding for sharper focus of the azimuthally polarized beam. Opt. Lett. 35(23), 3928–3930 (2010)

    Article  ADS  Google Scholar 

  7. Wang, J., Chen, W., Zhan, Q.: Creation of uniform three-dimensional optical chain through tight focusing of space-variant polarized beams. J. Opt. 14, 1–6 (2012)

    Google Scholar 

  8. Sundaram, C., Prabakaran, K., Anbarasan, P., Rajesh, K., Musthafa, A.: Creation of super long transversely polarized optical needle using azimuthally polarized multi Gaussian beam. Chin. Phys Lett. 33(6), 064203 (2016)

    Article  ADS  Google Scholar 

  9. Yu, Y., Huang, H., Lin, S., Chen, M., Zhan, Q.: Generation of optical needles and bright spot arrays through reversing the radiation pattern of collinear antenna array. J Opt. 21(7), 075602 (2019)

    Article  ADS  Google Scholar 

  10. Zeng, Y., Chen, M., Huang, H., Wu, P., Zhou, M., Yu, Y.: Generating an optical needle with prescribed length and polarization direction through reversing the radiation pattern from a spatial ULS antenna. J. Mod. Opt. 68(21), 1202–1210 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  11. Lin, H., Li, Y., Zhou, X.: Generation of optical needle and dark channel by tight focusing of radially polarized circular partially coherent beams. Opt Appl. 50(2), 228–240 (2020)

    Google Scholar 

  12. Wen, Y., Qin, G., Sang, M., Yang, Y.: Flattop shaped creation based on strong focusing of circularly polarized vortex beams. J Opt. 46(2), 164–169 (2017)

    Article  Google Scholar 

  13. Zhang, X., Chen, R., Wang, A.: Focusing properties of cylindrical vector vortex beams. Opt. Commun. 414, 10–15 (2018)

    Article  ADS  Google Scholar 

  14. Payeur, S., Fourmaux, S., Schmidt, B., MacLean, J., Tchervenkov, C., Légaré, F., Piché, M., Kieffer, J.: Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse. Appl Phys Lett. 101(4), 041105 (2012)

    Article  ADS  Google Scholar 

  15. Dai, L., Li, J., Zang, W., Tian, J.: Vacuum electron acceleration driven by a tightly focused radially polarized Gaussian beam. Opt. Express 19(10), 9303–9308 (2011)

    Article  ADS  Google Scholar 

  16. Smalley, D., Nygaard, E., Squire, K., Wagoner, J., Rasmussen, J., Gneiting, S., Qaderi, K., Goodsell, J., Rogers, W., Lindsey, M., Costner, K., Monk, A., Pearson, M., Haymore, B., Peatross, J.: A photophoretic-trap volumetric display. Nature 553(7689), 486–490 (2018)

    Article  ADS  Google Scholar 

  17. Wang, X., Rui, G., Gong, L., Gu, B., Cui, Y.: Manipulation of resonant metallic nanoparticle using 4Pi focusing system. Opt. Express 24(21), 24143–24152 (2016)

    Article  ADS  Google Scholar 

  18. Rui, G., Zhan, Q.: Trapping of resonant metallic nanoparticles with engineered vectorial optical field. Nanophotonics 3(6), 351–361 (2014)

    Article  ADS  Google Scholar 

  19. Cui, W., Song, F., Song, F., Ju, D., Liu, S.: Trapping metallic particles under resonant wavelength with 4π tight focusing of radially polarized beam. Opt. Express. 24(18), 20062–20068 (2016)

    Article  ADS  Google Scholar 

  20. Chen, J., Wan, C., Kong, L., Zhan, Q.: Tightly focused optical field with controllable photonic spin orientation. Opt. Express 25(16), 19517–19528 (2017)

    Article  ADS  Google Scholar 

  21. Wang, H., Yuan, G., Tan, W., Shi, L., Chong, C.: Spot size and depth of focus in optical data storage system. Opt Eng. 46(6), 065201 (2007)

    Article  ADS  Google Scholar 

  22. Bokor, N., Davidson, N.: Toward a spherical spot distribution with 4π focusing of radially polarized light. Opt. Lett. 29(17), 1968–1970 (2004)

    Article  ADS  Google Scholar 

  23. Yan, S., Yao, B., Zhao, W., Lei, M.: Generation of multiple spherical spots with a radially polarized beam in a 4π focusing system. J. Opt. Soc. Am. A 27(9), 2033–2037 (2010)

    Article  ADS  Google Scholar 

  24. Chen, W., Zhan, Q.: Creating a spherical focal spot with spatially modulated radial polarization in 4Pi microscopy. Opt. Lett. 34(16), 2444–2446 (2009)

    Article  ADS  Google Scholar 

  25. Suresh, P., Thilagavathi, R., Gokulakrishnan, K., Rajesh, K., Pillai, T.: Focusing properties of a 4Pi configuration system under the illumination of double ring shaped LG11 beam. Opt. Quantum Electron. 47(2), 179–184 (2014)

    Article  Google Scholar 

  26. Chen, Z., Pu, J., Zhao, D.: Generating and shifting a spherical focal spot in a 4Pi focusing system illuminated by azimuthally polarized beams. Phys. Lett. A 377(34–36), 2231–2234 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Richards, B., Wolf, E.: Generating and shifting a spherical focal spot in a 4Pi focusing system illuminated by azimuthally polarized beams. Proc. Royal Soc. A 253(1274), 358–379 (1959)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12174243 and 61108010) and the Natural Science Foundation of Shanghai (Grant No. 16ZR1411600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfang Yang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yan, X., He, Y. et al. Generating and converting special focal field patterns in a 4Pi focusing system illuminated by azimuthally polarized vortex beam. Opt Rev 29, 320–326 (2022). https://doi.org/10.1007/s10043-022-00748-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00748-x

Keywords

Navigation