Skip to main content
Log in

Demodulation scheme for constant-weight codes using convolutional neural network in holographic data storage

  • Special Section: Regular Paper
  • International Symposium on Imaging, Sensing, and Optical Memory (ISOM ’20), Takamatsu, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In practical applications of holographic data storage (HDS), which offers both high capacity and high transfer rates, reduction of the error rate is a major issue. In this study, we have applied a convolutional neural network (CNN)-based demodulation scheme for constant-weight codes to HDS and have demonstrated that the error rate can be reduced by approximately one order of magnitude when compared with that of the conventional ranking method. We have also evaluated the HDS error characteristics, which were not clarified fully in previous studies. The results of this evaluation showed that symbols with certain specific shapes are prone to errors. This study is expected to provide useful knowledge for use in practical applications of HDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Psaltis, D., Burr, G.: Holographic data storage. Computer 31(2), 52 (1998). https://doi.org/10.1109/2.652917

    Article  Google Scholar 

  2. Glass, A., Cardillo, M., Coufal, H.J., Psaltis, D., Sincerbox, G.T.: Holographic Data Storage. Springer, Berlin (2000)

    Google Scholar 

  3. Curtis, K., Dhar, L., Hill, A., Wilson, W., Ayres, M. (eds.): Holographic Data Storage: From Theory to Practical Systems. Wiley, New Jersey (2010)

    Google Scholar 

  4. Curtis, K., Dhar, L., Hoskins, A., Ayres, M., Fotheringham, E.: in Holographic Data Storage: From Theory to Practical Systems, 8th edn., pp. 151–183. Wiley, New Jersey (2010)

    Book  Google Scholar 

  5. Nishimoto, K., Naito, F., Yamamoto, M.: Soft-decision viterbi decoding for 2/4 modulation code in holographic memory. Jpn. J. Appl. Phys. 45(5R), 4102 (2006). https://doi.org/10.1143/JJAP.45.4102

    Article  ADS  Google Scholar 

  6. Kim, N.Y., Lee, J., Lee, J.: Rate 5/9 two-dimensional pseudobalanced code for holographic data storage systems. Jpn. J. Appl. Phys. 45(2B), 1293 (2006). https://doi.org/10.1143/JJAP.45.1293

    Article  ADS  Google Scholar 

  7. Malki, O., Knittel, J., Przygodda, F., Trautner, H., Richter, H.: Two-dimensional modulation for holographic data storage systems. Jpn. J. Appl. Phys 47(7S1), 5993 (2008). https://doi.org/10.1143/JJAP.47.5993

    Article  ADS  Google Scholar 

  8. Okumura, T., Hayashi, T., Akiyama, J., Maeda, S., Murakami, Y., Takahashi, A.: Two-dimensional partial response maximum likelihood with constant-weight constraint for holographic data storage. Jpn. J. Appl. Phys 47(7S1), 5971 (2008). https://doi.org/10.1143/JJAP.47.5971

    Article  ADS  Google Scholar 

  9. Yoshida, S., Takahata, Y., Horiuchi, S., Yamamoto, M.: Spatial run-length limited code for reduction of hologram size in holographic data storage. Opt. Commun. 358, 103 (2016). https://doi.org/10.1016/j.optcom.2015.08.088

    Article  ADS  Google Scholar 

  10. Chou, W.C., Neifeld, M.A.: Soft-decision array decoding for volume holographic memory systems. J. Opt. Soc. Am. A 18(1), 185 (2001). https://doi.org/10.1364/JOSAA.18.000185

    Article  ADS  Google Scholar 

  11. Pishro-Nik, H., Rahnavard, N., Ha, J., Fekri, F., Adibi, A.: Low-density parity-check codes for volume holographic memory systems. Appl. Opt. 42(5), 861 (2003). https://doi.org/10.1364/AO.42.000861

    Article  ADS  Google Scholar 

  12. Yoon, P., Chung, B., Kim, H., Park, J., Park, G.: Low-density parity-check code for holographic data storage system with balanced modulation code. Jpn. J. Appl. Phys 47(7S1), 5981 (2008). https://doi.org/10.1143/JJAP.47.5981

    Article  ADS  Google Scholar 

  13. Keskinoz, M., Kumar, B.V.K.V.: Application of linear minimum mean-squared-error equalization for volume holographic data storage. Appl. Opt. 38(20), 4387 (1999). https://doi.org/10.1364/AO.38.004387

    Article  ADS  Google Scholar 

  14. Choi, A.S., Baek, W.S.: Equalization for digital holographic data storage. Jpn. J. Appl. Phys. 40(3S), 1737 (2001). https://doi.org/10.1143/JJAP.40.1737

    Article  ADS  Google Scholar 

  15. Nabavi, S., Kumar, B.V.K.V.: Application of linear and nonlinear equalization methods for holographic data storage. Jpn. J. Appl. Phys. 45(2B), 1079 (2006). https://doi.org/10.1143/JJAP.45.1079

    Article  ADS  Google Scholar 

  16. Kim, J., Lee, J.: Partial response maximum likelihood detections using two-dimensional soft output viterbi algorithm with two-dimensional equalizer for holographic data storage. Jpn. J. Appl. Phys. 48(3S1), 03A033 (2009). https://doi.org/10.1143/JJAP.48.03A033

    Article  Google Scholar 

  17. Koo, K., Kim, S.Y., Kim, S.W.: Modified two-dimensional soft output viterbi algorithm with two-dimensional partial response target for holographic data storage. Jpn. J. Appl. Phys. 51(8S2), 08JB03 (2012). https://doi.org/10.1143/JJAP.51.08JB03

    Article  Google Scholar 

  18. Kim, K., Kim, S.H., Koo, G., Seo, M.S., Kim, S.W.: Decision feedback equalizer for holographic data storage. Appl. Opt. 57(15), 4056 (2018). https://doi.org/10.1364/AO.57.004056

    Article  ADS  Google Scholar 

  19. Shimobaba, T., Kuwata, N., Homma, M., Takahashi, T., Nagahama, Y., Sano, M., Hasegawa, S., Hirayama, R., Kakue, T., Shiraki, A., Takada, N., Ito, T.: Convolutional neural network-based data page classification for holographic memory. Appl. Opt. 56(26), 7327 (2017). https://doi.org/10.1364/AO.56.007327

    Article  ADS  Google Scholar 

  20. Katano, Y., Muroi, T., Kinoshita, N., Ishii, N., Hayashi, N.: Data demodulation using convolutional neural networks for holographic data storage. Jpn. J. Appl. Phys. 57(9S1), 09SC01 (2018). https://doi.org/10.7567/JJAP.57.09SC01

    Article  Google Scholar 

  21. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  22. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(56), 1929 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Kingma, D.P., Ba, J.: Adam: A  Method for stochastic optimization. In: Proceedings of international conference on learning representations (ICLR), pp. 1–15 (2015)

  24. Barbastathis, G., Levene, M., Psaltis, D.: Shift multiplexing with spherical reference waves. Appl. Opt. 35(14), 2403 (1996). https://doi.org/10.1364/AO.35.002403

    Article  ADS  Google Scholar 

  25. Yoshida, S., Matsubara, T., Kurata, H., Horiuchi, S., Yamamoto, M.: Multi-dimensional shift multiplexing technique with spherical reference waves. IEICE Trans. Electron. E–96C(12), 1520 (2013). https://doi.org/10.1587/transele.E96.C.1520

    Article  ADS  Google Scholar 

  26. Yoshida, S., Kurata, H., Ozawa, S., Okubo, K., Horiuchi, S., Ushiyama, Z., Yamamoto, M., Koga, S., Tanaka, A.: High-density holographic data storage using three-dimensional shift multiplexing with spherical reference wave. Jpn. J. Appl. Phys. 52(9S2), 09LD07 (2013). https://doi.org/10.7567/JJAP.52.09LD07

    Article  Google Scholar 

  27. Ushiyama, Z., Kurata, H., Tsukamoto, Y., Yoshida, S., Yamamoto, M.: Shift-peristrophic multiplexing for high density holographic data storage. Appl. Sci. 4(2), 148 (2014). https://doi.org/10.3390/app4020148

    Article  Google Scholar 

  28. Yoshida, S., Takahata, Y., Horiuchi, S., Yamamoto, M.: Diffraction model of peristrophic multiplexing with spherical reference wave. J. Opt. Soc. Am. A 32(2), 224 (2015). https://doi.org/10.1364/JOSAA.32.000224

    Article  ADS  Google Scholar 

  29. Nobukawa, T., Nomura, T.: Shift multiplexing with a spherical wave in holographic data storage based on a computer-generated hologram. Appl. Opt. 56(13), F31 (2017). https://doi.org/10.1364/AO.56.000F31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhei Yoshida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurokawa, S., Yoshida, S. Demodulation scheme for constant-weight codes using convolutional neural network in holographic data storage. Opt Rev 29, 375–381 (2022). https://doi.org/10.1007/s10043-022-00744-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00744-1

Keywords

Navigation