Skip to main content

Advertisement

Log in

Precise retinal shape measurement by alignment error and eye model calibration

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Objective

To evaluate the repeatability of the optical coherence tomography (OCT) retinal shape measurement with and without alignment correction in children and adults.

Methods

62 eyes of the 31 subjects were examined on the OCT with auto-alignment and alignment correction functions. We performed three measurements on each eye, created 2D retinal height maps, and extracted horizontal and vertical profiles for repeatability analysis and Legendre polynomial representation. Repeatability was determined from the average standard deviation. We estimated the refractive errors produced by the observed alignment errors. We also examined the repeatability improvement of the slopes, curvatures, and higher-order coefficients for the subjects using the Student t test.

Results

Repeatability was higher in the data with alignment. We observed the average repeatability in the child group with standard deviation (SD) equal 38.20 µm in raw data, and SD = 6.11 µm in the corrected data, in adults SD = 17.04 µm in raw data, and SD = 5.22 µm in the corrected data. The slope repeatability improved in both child [horizontal t (18) = 4.62, p < 0.001 and vertical t (17) = 4.43, p < 0.001] and adult groups [t (18) = 2.73, p = 0.007 and vertical t (26) = 2.14, p = 0.02], while higher-order coefficients were not affected.

Conclusions

Alignment correction improved repeatability of the OCT retinal shape measurements, especially for child subjects. Curvature and higher-order distortions were not affected by the alignment error. The refractive errors produced by alignment errors are low, and the model can be used to estimate the peripheral refraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Foster, P.J., Jiang, Y.: Epidemiology of myopia. Eye (Basingstoke). 28, 202–208 (2014). https://doi.org/10.1038/eye.2013.280

    Article  Google Scholar 

  2. Wu, P.-C., Huang, H.-M., Yu, H.-J., Fang, P.-C., Chen, C.-T.: Epidemiology of Myopia. Asia-Pac. J. Ophthalmol. 5, 386–393 (2016). https://doi.org/10.1097/APO.0000000000000236

    Article  Google Scholar 

  3. Morgan, I.G., French, A.N., Ashby, R.S., Guo, X., Ding, X., He, M., Rose, K.A.: The epidemics of myopia: aetiology and prevention. Prog. Retinal. Eye. Res. 62, 134–149 (2018). https://doi.org/10.1097/10.1016/j.preteyeres.2017.09.004

    Article  Google Scholar 

  4. Holden, B.A., Fricke, T.R., Wilson, D.A., Jong, M., Naidoo, K.S., Sankaridurg, P., Wong, T.Y., Naduvilath, T.J., Resnikoff, S.: Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 123, 1036–1042 (2016). https://doi.org/10.1016/j.ophtha.2016.01.006

    Article  Google Scholar 

  5. Haarman, A.E.G., Enthoven, C.A., Willem Tideman, J.L., Tedja, M.S., Verhoeven, V.J.M., Klaver, C.C.W.: The complications of myopia: a review and meta-analysis. Investig. Ophthalmol. Vis. Sci. 61(4), 49 (2020). https://doi.org/10.1016/10.1167/iovs.61.4.49

    Article  Google Scholar 

  6. American Optometric Association. Evidence-based clinical practice guideline: comprehensive pediatric eye and vision examination. Optom. Clin. Pract. 2(2) (2020). https://doi.org/10.37685/uiwlibraries.2575-7717.2.2.1007

  7. Wolffsohn, J.S., Flitcroft, D.I., Gifford, K.L., Jong, M., Jones, L., Klaver, C.C.W., Logan, N.S., Naidoo, K., Resnikoff, S., Sankaridurg, P., Smith, E.L., Troilo, D., Wildsoet, C.F.: IMI—myopia control reports overview and introduction. Invest. Ophthalmol. Vis. Sci. 60, M1–M19 (2019). https://doi.org/10.1167/iovs.18-25980

    Article  Google Scholar 

  8. Atchison, D.A., Jones, C.E., Schmid, K.L., Pritchard, N., Pope, J.M., Strugnell, W.E., Riley, R.A.: Eye shape in emmetropia and myopia. Invest. Ophthalmol. Vis. Sci. 45, 3380–3386 (2004). https://doi.org/10.1167/iovs.04-0292

    Article  Google Scholar 

  9. Guo, X., Xiao, O., Chen, Y., Wu, H., Chen, L., Morgan, I.G., He, M.: Three-dimensional eye shape, myopic maculopathy, and visual acuity: the zhongshan ophthalmic center-brien holden vision institute high myopia cohort study. Ophthalmology 124, 679–687 (2017). https://doi.org/10.1016/j.ophtha.2017.01.009

    Article  Google Scholar 

  10. Wakazono, T., Yamashiro, K., Miyake, M., Hata, M., Miyata, M., Uji, A., Nakanishi, H., Oishi, A., Tamura, H., Ooto, S., Tsujikawa, A.: Time-course change in eye shape and development of staphyloma in highly myopic eyes. Invest. Ophthalmol. Vis. Sci. 59, 5455–5461 (2018). https://doi.org/10.1167/iovs.18-24754

    Article  Google Scholar 

  11. Ciller, C., Zanet, D., Rüegsegger, S.I., Pica, M.B., Sznitman, A., Thiran, R., Maeder, J.-P., Munier, P.L., Kowal, F.L., Cuadra, J.H.: Automatic segmentation of the eye in 3D magnetic resonance imaging: a novel statistical shape model for treatment planning of retinoblastoma. Int. J. Radiat. Oncol. Biol. Phys. (2015). https://doi.org/10.7892/boris.65805

    Article  Google Scholar 

  12. Lim, L.S., Yang, X., Gazzard, G., Lin, X., Sng, C., Saw, S.M., Qiu, A.: Variations in eye volume, surface area, and shape with refractive error in young children by magnetic resonance imaging analysis. Invest. Ophthalmol. Vis. Sci. 52, 8878–8883 (2011). https://doi.org/10.1167/iovs.11-7269

    Article  Google Scholar 

  13. Lee, K.M., Park, S.W., Kim, M., Oh, S., Kim, S.H.: Relationship between three-dimensional magnetic resonance imaging eyeball shape and optic nerve head morphology. Ophthalmology. 128, 532–544 (2021). https://doi.org/10.1016/j.ophtha.2020.08.034

    Article  Google Scholar 

  14. Moriyama, M., Ohno-Matsui, K., Hayashi, K., Shimada, N., Yoshida, T., Tokoro, T., Morita, I.: Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging. Ophthalmology. 118, 1626–1637 (2011). https://doi.org/10.1016/j.ophtha.2011.01.018

    Article  Google Scholar 

  15. Pope, J.M., Verkicharla, P.K., Sepehrband, F., Suheimat, M., Schmid, K.L., Atchison, D.A.: Three-dimensional MRI study of the relationship between eye dimensions, retinal shape and myopia. Biomed. Opt. Express. 8, 2386 (2017). https://doi.org/10.1364/boe.8.002386

    Article  Google Scholar 

  16. Ohno-Matsui, K., Akiba, M., Modegi, T., Tomita, M., Ishibashi, T., Tokoro, T., Moriyama, M.: Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia. Invest. Ophthalmol. Vis. Sci. 53, 6046–6061 (2012). https://doi.org/10.1167/iovs.12-10161

    Article  Google Scholar 

  17. Kuo, A.N., Verkicharla, P.K., McNabb, R.P., Cheung, C.Y., Hilal, S., Farsiu, S., Chen, C., Wong, T.Y., Kamran Ikram, M., Cheng, C.Y., Young, T.L., Saw, S.M., Izatt, J.A.: Posterior eye shape measurement with retinal OCT compared to MRI. Invest. Ophthalmol. Vis. Sci. (2016). https://doi.org/10.1167/iovs.15-18886

    Article  Google Scholar 

  18. Kuo, A.N., McNabb, R.P., Izatt, J.A.: Advances in whole-eye optical coherence tomography imaging. Asia. Pac. J. Ophthalmol. 8(2), 99–104 (2019). https://doi.org/10.22608/APO.201901

    Article  Google Scholar 

  19. Atchison, D.A., Pritchard, N., Schmid, K.L.: Peripheral refraction along the horizontal and vertical visual fields in myopia. Vision. Res. 46, 1450–1458 (2006). https://doi.org/10.1016/j.visres.2005.10.023

    Article  Google Scholar 

  20. Benavente-Pérez, A., Nour, A., Troilo, D.: Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus. Invest. Ophthalmol. Vis. Sci. 55, 6765–6773 (2014). https://doi.org/10.1167/iovs.14-14524

    Article  Google Scholar 

  21. Smith, E.L., Hung, L.F., Huang, J., Blasdel, T.L., Humbird, T.L., Bockhorst, K.H.: Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms. Invest. Ophthalmol. Vis. Sci. 51, 3864–3873 (2010). https://doi.org/10.1167/iovs.09-4969

    Article  Google Scholar 

  22. Zhang, H.Y., Lam, C.S.Y., Tang, W.C., Leung, M., To, C.H.: Defocus incorporated multiple segments spectacle lenses changed the relative peripheral refraction: A 2-year randomized clinical trial. Invest. Ophthalmol. Vis. Sci. (2020). https://doi.org/10.1167/IOVS.61.5.53

    Article  Google Scholar 

  23. Zhu, Q., Liu, Y., Tighe, S., Zhu, Y., Su, X., Lu, F., Hu, M.: Retardation of myopia progression by multifocal soft contact lenses. Int. J. Med. Sci. 16(2), 198–202 (2019). https://doi.org/10.7150/ijms.30118

    Article  Google Scholar 

  24. Gifford, K.L., Gifford, P., Hendicott, P.L., Schmid, K.L.: Stability of peripheral refraction changes in orthokeratology for myopia. Cont. Lens Anterior. Eye. 43, 44–53 (2020). https://doi.org/10.1016/j.clae.2019.11.008

    Article  Google Scholar 

  25. von Helmholtz, H.: Helmholtz`s treatise on physiological optics. Thoemmes Continuum, Bristol (2000)

    Google Scholar 

  26. Aboites, V.: Legendre polynomials: a simple methodology. J. Phys. Conf. Ser. (2019). https://doi.org/10.1088/1742-6596/1221/1/012035

    Article  Google Scholar 

  27. Helo, A., Pannasch, S., Sirri, L., Rämä, P.: The maturation of eye movement behavior: scene viewing characteristics in children and adults. Vision. Res. 103, 83–91 (2014). https://doi.org/10.1016/j.visres.2014.08.006

    Article  Google Scholar 

  28. Verkicharla, P.K., Mathur, A., Mallen, E.A.H., Pope, J.M., Atchison, D.A.: Eye shape and retinal shape, and their relation to peripheral refraction. Ophthalmic. Physiol. Opt. 32(3), 184–199 (2012). https://doi.org/10.1111/j.1475-1313.2012.00906.x

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the R&D Department, Topcon Co, Tokyo, Japan, and the Department of Ophthalmology at the University of Tsukuba, Tsukuba, Japan. The sponsor did not influence the research outcomes.

Author information

Authors and Affiliations

Authors

Contributions

Commercial relationships: Topcon Co: TM (E), JL (E), TO (F).

Corresponding author

Correspondence to Toshifumi Mihashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palchunova, K., Mino, T., Mihashi, T. et al. Precise retinal shape measurement by alignment error and eye model calibration. Opt Rev 29, 188–196 (2022). https://doi.org/10.1007/s10043-022-00733-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00733-4

Keywords

Navigation