Skip to main content

Multispectral image sensor attachable to low-cost microcomputers

Abstract

Multi-spectral filter array composed of a wavy alternating dielectric multilayer was integrated on a CMOS image sensor of the Raspberry Pi HQ Camera. The filter array consists of 16-channel elementary filters exhibiting pseudo-random transmission characteristics. Each filter covers \(20\times 20\) CMOS pixels. The incoming spectrum is encoded as a set of 16 grayscale intensities and passed to principal component analysis (PCA) to classify the states of the target spectral characteristic. Preliminary demonstration for blood flow state identification in human peripheral revealed proposed device’s potential ability as a real-time monitoring tool in the near infrared.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. Saini, S.S., Sridhar, A., Ahluwalia, K.: Smartphone optical sensors. Opt. Photon. News 20, 36–41 (2019)

    Google Scholar 

  2. Lambrechts, A., Gonzalez, P., Geelen, B., Soussan, P., Tack, K., Jayapala, M.: A CMOS-compatible, integrated approach to hyper- and multispectral imaging. In: Proceedings of International Electron Devices Meeting (IEDM), IEDM14-261 (2014)

  3. Wang, Z., Yi, S., Chen, A., Zhou, M., Luk, T.S., James, A., Nogan, J., Ross, W., Joe, G., Shahsafi, A., Wang, K.X., Kats, M.A., Yu, Z.: Single-shot on-chip spectral sensors based on photonic crystal slabs. Nat. Commun. 10, 1020 (2019)

    ADS  Article  Google Scholar 

  4. Najiminaini, M., Vasefi, F., Kaminska, B., Carson, J.J.L.: Nanohole-array-based device for 2D snapshot multispectral imaging. Sci. Rep. 3, 2589 (2013)

    ADS  Article  Google Scholar 

  5. For example, Raspberry Pi Forums. https://forums.raspberrypi.com/

  6. https://www.raspberrypi.org/products/raspberry-pi-high-quality-camera/

  7. Ohtera, Y., Shinoda, K.: NIR spectrum estimation utilizing photonic crystal distributed passband-type multiple filter array. Appl. Opt. 58(12), 3166–3173 (2019)

    ADS  Article  Google Scholar 

  8. Ohtera, Y., Ikeda, N., Takaya, T., Shinoda, K.: Direct estimation of NIR reflection spectra utilizing a snapshot-type spectrometer with photonic crystal multi-spectral filter arrays. Appl. Opt. 59(17), 5216–5224 (2020)

    ADS  Article  Google Scholar 

  9. Oliver, J., Lee, W.-B., Lee, H.-No.: Filters with random transmittance for improving resolution in filter-array-based spectrometers. Opt. Express 21(4), 3969–3989 (2013)

    ADS  Article  Google Scholar 

  10. Kawashima, T., Sasaki, Y., Miura, K., Hashimoto, N., Baba, A., Ohkubo, H., Ohtera, Y., Sato, T., Ishikawa, W., Aoyama, T., Kawakami, S.: Development of autocloned photonic crystal devices. IEICE Trans. Electron. E87–C(3), 283–290 (2004)

    Google Scholar 

  11. https://www.photonic-lattice.com/en/

  12. For example, Eureca Messtechnik GmbH. https://www.eureca.de/21-1-Removing-Covers.html

  13. Grahn, H.F., Geladi, P.: Techniques and Applications of Hyperspectral Image Analysis, Sec. 5.4.1. Wiley, New York (2007)

    Book  Google Scholar 

  14. Brady, D.J.: Optical Imaging and Spectroscopy, Sec. 7.5.2. Wiley, New York (2009)

    Book  Google Scholar 

  15. Haneishi, H., Hasegawa, T., Hosoi, A., Yokoyama, Y., Tsumura, N., Miyake, Y.: System design for accurately estimating the spectral reflectance of art paintings. Appl. Opt. 39(35), 6621–6632 (2000)

    ADS  Article  Google Scholar 

  16. Chang, C.-C., Lin, N.-T., Kurokawa, U., Choi, B.I.: Spectrum reconstruction for filter-array spectrum sensor from sparse template selection. Opt. Eng. 50(11), 1144021–1144027 (2011)

    Article  Google Scholar 

  17. Shinoda, K., Ohtera, Y., Hasegawa, M.: Snapshot multispectral polarization imaging using a photonic crystal filter array. Opt. Express 26(12), 15948–15961 (2018)

    ADS  Article  Google Scholar 

  18. Sigernes, F., Syrjäsuo, M., Storvold, R., Fortuna, J., Grøtte, M.E., Johansen, T.A.: Do it yourself hyperspectral imager for handheld to airborne operations. Opt. Express 26(5), 6021–6035 (2018)

    ADS  Article  Google Scholar 

  19. Labsphere diffuse reflection standard. https://www.labsphere.com/product/spectralon-reflectance-targets/

  20. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

We are grateful for Mr. Shinsuke Kurata of Toyama Prefectural University for his effort and assistance in preparing the hyperspectral imaging system. This work has been in part supported by KAKENHI Grant no. 20K04520. EB lithography was carried out in the Micro Systems Integration Center of Tohoku University, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Ohtera.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ohtera, Y., Sato, A., Kawashima, T. et al. Multispectral image sensor attachable to low-cost microcomputers. Opt Rev 29, 140–152 (2022). https://doi.org/10.1007/s10043-022-00726-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00726-3

Keywords

  • Multi-spectral imaging
  • Raspberry Pi
  • Spectral encoding
  • Autocloning