Skip to main content
Log in

Effect of background materials in photonic crystal fiber sensor

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this study, an automobile wheel type photonic crystal fiber (PCF) has been designed to investigate the effect of the background material on analyte sensing. The designed PCF has a circular hollow core with eight slot-type air holes in cladding. The analysis is performed in the range of 0.5–1.5 THz, and different background materials are chosen during the simulation, for example, fused silica, BK7 glass, Zeonex, and SF2 glass. The sensing performance and light propagation properties are investigated to find out the suitable background material of the designed PCF. At 1 THz, the maximum sensitivity is achieved using fused silica as a background material, while BK7 glass, Zeonex, and SF2 glass show slightly lower relative sensitivity than fused silica. The obtained relative sensitivity is 92.0% of fused silica, 91.2% for BK7 glass, 90.1% for Zeonex, and 88.1% for SF2 glass. In this study, SF2 glass shows the lowest sensitivity, highest effective material loss, and highest confinement loss compares to fused silica, BK7 glass, and Zeonex. In contrast, fused silica shows the highest relative sensitivity, lowest effective material loss, and lowest confinement loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Timofeyenko, Y.G., Rosentreter, J.J., Mayo, S.: Piezoelectric quartz crystal microbalance sensor for trace aqueous cyanide ion determination. Anal. Chem. 79, 251–255 (2007). https://doi.org/10.1021/AC060890M

    Article  Google Scholar 

  2. Wu, J., Wang, L., Wang, Q., Zou, L., Ye, B.: The novel voltammetric method for determination of hesperetin based on a sensitive electrochemical sensor. Talanta 150, 61–70 (2016). https://doi.org/10.1016/J.TALANTA.2015.12.026

    Article  Google Scholar 

  3. EkhlasurRahaman, M., Bellal Hossain, M., Shekhar Mondal, H., Saha, R., Mahbub Hossain, M., Shamim Ahsan, M.: Highly sensitive photonic crystal fiber liquid sensor in terahertz frequency range. Mater. Today Proc. 43, 3815–3820 (2021). https://doi.org/10.1016/J.MATPR.2020.11.413

    Article  Google Scholar 

  4. Iqbal, F., Biswas, S., Bulbul, A.A.M., Rahaman, H., Hossain, M.B., Rahaman, M.E., Awal, M.A.: Alcohol sensing and classification using PCF-based sensor. Sens. Bio-Sensing Res. 30, 100384 (2020). https://doi.org/10.1016/J.SBSR.2020.100384

    Article  Google Scholar 

  5. Jiaqiang, X., Yuping, C., Daoyong, C., Jianian, S.: Hydrothermal synthesis and gas sensing characters of ZnO nanorods. Sensors Actuators B Chem. 113, 526–531 (2006). https://doi.org/10.1016/J.SNB.2005.03.097

    Article  Google Scholar 

  6. Shkotova, L.V., Soldatkin, A.P., Gonchar, M.V., Schuhmann, W., Dzyadevych, S.V.: Amperometric biosensor for ethanol detection based on alcohol oxidase immobilised within electrochemically deposited Resydrol film. Mater. Sci. Eng. C. 26, 411–414 (2006). https://doi.org/10.1016/J.MSEC.2005.10.031

    Article  Google Scholar 

  7. Hossain, M.B., Podder, E.: Design and investigation of PCF-based blood components sensor in terahertz regime. Appl. Phys. A. 125, 861 (2019). https://doi.org/10.1007/s00339-019-3164-x

    Article  ADS  Google Scholar 

  8. Rahaman, M.E., Jibon, R.H., Ahsan, M.S., Ahmed, F., Sohn, I.-B.: Glucose level measurement using photonic crystal fiber–based plasmonic sensor. Plasmon. 2021(1), 1–11 (2021). https://doi.org/10.1007/S11468-021-01497-4

    Article  Google Scholar 

  9. Rahaman, M.E., Jibon, R.H., Hossain, M.B., Mondal, H.S., Bulbul, A.A.M., Saha, A., Hassan, M.M.: Sensing Toxic Carbonyl Compounds in Cigarette Smoke by Photonic Crystal Fiber. 2020 11th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2020. (2020). https://doi.org/10.1109/ICCCNT49239.2020.9225607

  10. Hossain, M.B., Podder, E., Bulbul, A.A.-M., Mondal, H.S.: Bane chemicals detection through photonic crystal fiber in THz regime. Opt. Fiber Technol. 54, 102102 (2020). https://doi.org/10.1016/j.yofte.2019.102102

    Article  Google Scholar 

  11. Asaduzzaman, S., Ahmed, K., Bhuiyan, T., Farah, T.: Hybrid photonic crystal fiber in chemical sensing. Springerplus 5, 1–11 (2016). https://doi.org/10.1186/S40064-016-2415-Y

    Article  Google Scholar 

  12. Ahmed, K., Morshed, M.: Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications. Sens. Bio-Sensing Res. 7, 1–6 (2016). https://doi.org/10.1016/J.SBSR.2015.10.005

    Article  Google Scholar 

  13. Arik, E., Koral, C., Altan, H., Esentürk, O.: A new method for alcohol content determination of fuel oils by terahertz spectroscopy. Int. Conf. Infrared, Millimeter, Terahertz Waves, IRMMW-THz. (2013). https://doi.org/10.1109/IRMMW-THZ.2013.6665885

  14. Paul, B.K., Ahmed, K., Vigneswaran, D., Sen, S., Islam, M.S.: Quasi photonic crystal fiber for chemical sensing purpose in the terahertz regime: design and analysis. Opt. Quantum Electron 51, 1–12 (2019). https://doi.org/10.1007/S11082-019-1956-Z

    Article  Google Scholar 

  15. Ademgil, H., Haxha, S.: PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications. Sensors 15, 31833–31842 (2015). https://doi.org/10.3390/s151229891

    Article  ADS  Google Scholar 

  16. Asaduzzaman, S., Ahmed, K.: Microarray-core based circular photonic crystal fiber for high chemical sensing capacity with low confinement loss. Opt. Appl. 47, 41–49 (2017). https://doi.org/10.5277/OA170104

    Article  Google Scholar 

  17. Podder, E., Hossain, M.B., Al-Mamun Bulbul, A., Shekhar Mondal, H.: Ethanol Detection Through Photonic Crystal Fiber. In: Proceedings of International Joint Conference on Computational Intelligence, Springer, Singapore, pp 175–182 (2020). https://doi.org/10.1007/978-981-13-7564-4_15

  18. Arif, M.F.H., Biddut, M.J.H.: A new structure of photonic crystal fiber with high sensitivity, high nonlinearity, high birefringence and low confinement loss for liquid analyte sensing applications. Sens. Bio-Sensing Res. 12, 8–14 (2017). https://doi.org/10.1016/J.SBSR.2016.11.003

    Article  Google Scholar 

  19. Sultana, J., Islam, M.S., Ahmed, K., Dinovitser, A., Ng, B.W.-H., Abbott, D.: Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl. Opt. 57, 2426 (2018). https://doi.org/10.1364/AO.57.002426

    Article  ADS  Google Scholar 

  20. Ahmed, K., Ahmed, F., Roy, S., Paul, B.K., Aktar, M.N.: Refractive index based blood components sensing in terahertz spectrum. IEEE Sens. J (2019). https://doi.org/10.1109/JSEN.2019.2895166

    Article  Google Scholar 

  21. Islam, M.S., Sultana, J., Dinovitser, A., Ahmed, K., Islam, M.R., Faisal, M., Ng, B.W.H., Abbott, D.: A novel Zeonex based photonic sensor for alcohol detection in beverages. 2nd IEEE Int. Conf. Telecommun. Photonics, ICTP 2017. 2017-Decem, 114–118 (2018). https://doi.org/10.1109/ICTP.2017.8285905

  22. Abdullah-Al-Shafi, M., Sen, S.: Design and analysis of a chemical sensing octagonal photonic crystal fiber (O-PCF) based optical sensor with high relative sensitivity for terahertz (THz) regime. Sens. Bio-Sensing Res. 29, 100372 (2020). https://doi.org/10.1016/J.SBSR.2020.100372

    Article  Google Scholar 

  23. Islam, M.S., Sultana, J., Ahmed, K., Islam, M.R., Dinovitser, A., Ng, B.W.-H., Abbott, D.: A novel approach for spectroscopic chemical identification using photonic crystal fiber in the Terahertz Regime. IEEE Sens. J. 18, 575–582 (2018). https://doi.org/10.1109/JSEN.2017.2775642

    Article  ADS  Google Scholar 

  24. Islam, M.S., Sultana, J., Dinovitser, A., Ahmed, K., Ng, B.W.H., Abbott, D.: Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz regime. Opt. Commun. 426, 341–347 (2018). https://doi.org/10.1016/j.optcom.2018.05.030

    Article  ADS  Google Scholar 

  25. Ahmed, K., Islam, M.I., Paul, B.K., Islam, M.S., Sen, S., Chowdhury, S., Uddin, M.S., Asaduzzaman, S., Bahar, A.N.: Effect of photonic crystal fiber background materials in sensing and communication applications. Mater. Discov. 7, 8–14 (2017). https://doi.org/10.1016/j.md.2017.05.002

    Article  Google Scholar 

  26. Islam, M.S., Sultana, J., Cordeiro, C.M.B., Cruz, A.L.S., DInovitser, A., Ng, B.W.H., Abbott, D.: Broadband Characterization of Glass and Polymer Materials Using THz-TDS. Int. Conf. Infrared, Millimeter, Terahertz Waves, IRMMW-THz. 2019-September, (2019). https://doi.org/10.1109/IRMMW-THZ.2019.8874013

  27. Islam, M.S., Cordeiro, C.M.B., Nine, M.J., Sultana, J., Cruz, A.L.S., DInovitser, A., Ng, B.W.H., Ebendorff-Heidepriem, H., Losic, D., Abbott, D.: Experimental Study on Glass and Polymers: Determining the Optimal Material for Potential Use in Terahertz Technology. IEEE Access. 8, 97204–97214 (2020). https://doi.org/10.1109/ACCESS.2020.2996278

  28. Naftaly, M., Miles, R.E.: Terahertz time-domain spectroscopy for material characterization. Proc. IEEE. 95, 1658–1665 (2007). https://doi.org/10.1109/JPROC.2007.898835

    Article  Google Scholar 

  29. Cruz, A.L.S., Cordeiro, C.M.B., Abbott, D., Sultana, J., Franco, M.A.R., Islam, M.S.: Terahertz optical fibers [Invited]. Opt. Express 28(11), 16089–16117 (2020). https://doi.org/10.1364/OE.389999

    Article  ADS  Google Scholar 

  30. Cruz, C.H.B., Cordeiro, C.M.B., Barretto, E.C.S., Chesini, G., Franco, M.A.R., Large, M.C.J., Lwin, R.: Microstructured-core optical fibre for evanescent sensing applications. Opt. Express 14(26), 13056–13066 (2006). https://doi.org/10.1364/OE.14.013056

    Article  ADS  Google Scholar 

  31. Zhang, L., Ren, G.J., Yao, J.Q.: A new photonic crystal fiber gas sensor based on evanescent wave in terahertz wave band: design and simulation. Optoelectron. Lett. 9, 438–440 (2013). https://doi.org/10.1007/s11801-013-3157-5

    Article  ADS  Google Scholar 

  32. Shi, C., Wang, D.N., Ho, H.L., Ruan, S.C., Jin, W., Hoo, Y.L.: Design and modeling of a photonic crystal fiber gas sensor. Appl. Opt 42(18), 3509–3515 (2003). https://doi.org/10.1364/AO.42.003509

    Article  ADS  Google Scholar 

  33. Paul, B.K., Ahmed, K., Vigneswaran, D., Ahmed, F., Roy, S., Abbott, D.: Quasi-photonic crystal fiber-based spectroscopic chemical sensor in the terahertz spectrum: design and analysis. IEEE Sens. J. 18, 9948–9954 (2018). https://doi.org/10.1109/JSEN.2018.2872892

    Article  ADS  Google Scholar 

  34. Saitoh, K., Koshiba, M.: Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Opt. Express 11(23), 3100–3109 (2003). https://doi.org/10.1364/OE.11.003100

    Article  ADS  Google Scholar 

  35. Islam, M.S., Faisal, M., Razzak, S.M.A.: Extremely low loss porous-core photonic crystal fiber with ultra-flat dispersion in terahertz regime. JOSA B 34(8), 1747–1754 (2017). https://doi.org/10.1364/JOSAB.34.001747

    Article  ADS  Google Scholar 

  36. Hasan, M.M., Sen, S., Rana, M.J., Paul, B.K., Habib, M.A., Daiyan, G.M., Ahmed, K.: Heptagonal photonic crystal fiber based chemical sensor in THz regime. 2019 Jt. 8th Int. Conf. Informatics, Electron. Vision, ICIEV 2019 3rd Int. Conf. Imaging, Vis. Pattern Recognition, icIVPR 2019 with Int. Conf. Act. Behav. Comput. ABC 2019. 40–44 (2019). https://doi.org/10.1109/ICIEV.2019.8858555

  37. Yakasai, I., Abas, P.E., Kaijage, S.F., Caesarendra, W., Begum, F.: Proposal for a quad-elliptical photonic crystal fiber for Terahertz Wave guidance and sensing chemical warfare liquids. Photonics 6, 78 (2019). https://doi.org/10.3390/PHOTONICS6030078

    Article  Google Scholar 

  38. Kanmani, R., Ahmed, K., Roy, S., Ahmed, F., Kumar Paul, B., Mani Rajan, M.S.: The performance of hosting and core materials for slotted core Q-PCF in terahertz spectrum. Optik 194, 163084 (2019). https://doi.org/10.1016/J.IJLEO.2019.163084

    Article  ADS  Google Scholar 

  39. Bise, R.T., Trevor, D.J.: Sol-gel derived microstructured fiber: Fabrication and characterization. Conf. Opt. Fiber Commun. Tech. Dig. Ser. 3, 269–271 (2005). https://doi.org/10.1109/OFC.2005.192772

    Article  Google Scholar 

  40. Petrovich, M.N., Brakel, A. van, Poletti, F., Mukasa, K., Austin, E., Finazzi, V., Petropoulos, P., O’Driscoll, E., Watson, M., DelMonte, T., Monro, T.M., Dakin, J.P., Richardson, D.J.: Microstructured fibres for sensing applications. 6005, 78–92 (2005). https://doi.org/10.1117/12.631617

  41. Broeng, J., Mogilevstev, D., Barkou, S.E., Bjarklev, A.: Photonic crystal fibers: a new class of optical waveguides. Opt. Fiber Technol. 5, 305–330 (1999). https://doi.org/10.1006/OFTE.1998.0279

    Article  ADS  Google Scholar 

  42. Ghazanfari, A., Li, W., Leu, M.C., Hilmas, G.E.: A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying. Addit. Manuf. 15, 102–112 (2017). https://doi.org/10.1016/j.addma.2017.04.001

    Article  Google Scholar 

  43. Ebendorff-Heidepriem, H., Schuppich, J., Dowler, A., Lima-Marques, L., Monro, T.M.: 3D-printed extrusion dies: a versatile approach to optical material processing. Opt. Mater. Express. 4, 1494 (2014). https://doi.org/10.1364/ome.4.001494

    Article  ADS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Ekhlasur Rahaman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahaman, M.E., Hossain, M.B. & Mondal, H.S. Effect of background materials in photonic crystal fiber sensor. Opt Rev 29, 1–6 (2022). https://doi.org/10.1007/s10043-021-00712-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-021-00712-1

Keywords

Navigation