Abstract
We present the modeling of a porous core dispersion flatten photonic crystal fiber (PCF) for the fruitful transmission of THz signals. The model comprises only rectangular holes in both core and cladding areas. The model is numerically studied through simulation employing the finite element method (FEM)-based software. Simulation results disclose an insignificant amount of confinement loss (CL) of 8.01 × 10–5 cm−1 at 1.1 THz in the x-polarization mode. Besides, the effective material loss (EML) is only 2.2 × 10–3 cm−1 at the point. These values ensure a negligible amount of losses present at the modeled waveguide. The model offers a high numerical aperture. The power fraction for this model is 45% in the x-polarization mode at 1.1 THz. One of the splendid properties of the presented model is the ultra-flatten dispersion of approximately ± 0.004 ps/THz/cm, which ensures an insignificant amount of pulse broadening while applying this model in communication fields. The simple structure involving rectangles as well as desired values for optical parameters enhance the fruitfulness and fabrication feasibility of the presented THz waveguide. Thereby, the proposed sensor offers compound features, for instance, low CL, low EML, high NA, high power fraction, and flatten dispersion simultaneously.
This is a preview of subscription content, access via your institution.









References
Abbott, D., Zhang, X.-C.: Special issue on T-ray imaging, sensing, and retection. Proc. IEEE 95(8), 1509–1513 (2007)
Sultana, J., Islam, M.S., Islam, M., Abbott, D.: High numerical aperture, highly birefringent novel photonic crystal fibre for medical imaging applications. Electron. Lett. 54(2), 61–62 (2017)
Woodward, R., Wallace, V., Arnone, D., Linfield, E., Pepper, M.: Terahertz pulsed imaging of skin cancer in the time and frequency domain. J. Biol. Phys. 29(2–3), 257–259 (2003)
Yu, C., Fan, S., Sun, Y., Pickwell-MacPherson, E.: The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant. Imaging Med. Surg. 2(1), 33 (2012)
Withayachumnankul, W., Png, G.M., Yin, X., Atakaramians, S., Jones, I., Lin, H., Ung, B.S.Y., Balakrishnan, J., Ng, B.W.-H., Ferguson, B.: T-ray sensing and imaging. Proc. IEEE 95(8), 1528–1558 (2007)
Islam, M.S., Sultana, J., Ahmed, K., Islam, M.R., Dinovitser, A., Ng, B.W.-H., Abbott, D.: A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens. J. 18(2), 575–582 (2017)
Kawase, K., Ogawa, Y., Watanabe, Y., Inoue, H.: Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11(20), 2549–2554 (2003)
Nagatsuma, T., Ducournau, G., Renaud, C.C.: Advances in terahertz communications accelerated by photonics. Nat. Photonics 10(6), 371–379 (2016)
Islam, M.S., Sultana, J., Rana, S., Islam, M.R., Faisal, M., Kaijage, S.F., Abbott, D.: Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission. Opt. Fiber Technol. 34, 6–11 (2017)
Mizuno, M., Fukunaga, K., Saito, S., Hosako, I.: Analysis of calcium carbonate for differentiating between pigments using terahertz spectroscopy. J. Eur. Opt. Soc. Rapid Publ. 4, 09044 (2009)
Ahmed, K., Chowdhury, S., Paul, B.K., Islam, M.S., Sen, S., Islam, M.I., Asaduzzaman, S.: Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance. Appl. Opt. 56(12), 3477–3483 (2017)
Wang, K., Mittleman, D.M.: Metal wires for terahertz wave guiding. Nature 432(7015), 376–379 (2004)
Bowden, B., Harrington, J.A., Mitrofanov, O.: Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation. Opt. Lett. 32(20), 2945–2947 (2007)
Chen, L.-J., Chen, H.-W., Kao, T.-F., Lu, J.-Y., Sun, C.-K.: Low-loss subwavelength plastic fiber for terahertz waveguiding. Opt. Lett. 31(3), 308–310 (2006)
Skorobogatiy, M., Dupuis, A.: Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance. Appl. Phys. Lett. 90(11), 3514 (2007)
Zhao, G., Ter Mors, M., Wenckebach, T., Planken, P.C.: Terahertz dielectric properties of polystyrene foam. JOSA B 19(6), 1476–1479 (2002)
Hossain, M.A., Namihira, Y.: Light source design using Kagome-lattice hollow core photonic crystal fibers. Opt. Rev. 21(5), 490–495 (2014)
Pristinski, D., Du, H.: Solid-core photonic crystal fiber as a Raman spectroscopy platform with a silica core as an internal reference. Opt. Lett. 31(22), 3246–3248 (2006)
Hasan, M.R., Anower, M.S., Islam, M.A., Razzak, S.: Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance. Appl. Opt. 55(15), 4145–4152 (2016)
Kumar, C.S., Anbazhagan, R.: Investigation on chalcogenide and silica based photonic crystal fibers with circular and octagonal core. AEU Int. J. Electron. Commun. 72, 40–45 (2017)
Podder, E., Hossain, M.B., Jibon, R.H., Bulbul, A.A.-M., Mondal, H.S.: Chemical sensing through photonic crystal fiber: sulfuric acid detection. Front. Optoelectron. 12(4), 372–381 (2019)
Kumar, P., Kumar, V., Roy, J.S.: Design of quad core photonic crystal fibers with flattened zero dispersion. AEU Int. J. Electron. Commun. 98, 265–272 (2019)
Hossain, M.B., Bulbul, A.A.-M., Mukit, M.A., Podder, E.: Analysis of optical properties for square, circular and hexagonal photonic crystal fiber. Opt. Photonics J. 7(11), 235–243 (2017)
Podder, E., Jibon, R.H., Hossain, M.B., Bulbul, A.A.-M., Biswas, S., Kabir, M.A.: Alcohol sensing through photonic crystal fiber at different temperature. Opt. Photonics J. 8(10), 309 (2018)
Bulbul, A.A.-M., Jibon, R.H., Awal, M.A., Podder, E., Mondal, H.S., Ahmed, M.S., Hossain, M.B., Hasan, M.M., Saha, A.: Toxic chemicals detection using photonic crystal fiber in THz Regime. In: 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp 1–5. IEEE (2020). https://doi.org/10.1109/ICCCNT49239.2020.9225544
Al-Mamun, A.B., Rayhan Habib, J., Sumon Kumar, D., Tonmoy, R., Avijit, M.S., Bellal, M.H.: PCF based formalin detection by exploring the optical properties in THz regime. Nanosci. Nanotechnol. Asia 10, 1–8 (2020). https://doi.org/10.2174/2210681210999200525171303
Dash, J.N., Jha, R.: Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR. Plasmonics 11(6), 1505–1509 (2016). https://doi.org/10.1007/s11468-016-0203-8
Al-Mamun, B.A., Bellal, M.H., Rahul, D., Mahadi, H.: Zeonex-based tetra-rectangular core-photonic crystal fiber for NaCl detection. Nanosci. Nanotechnol. Asia 10, 1–9 (2020). https://doi.org/10.2174/2210681210999200708141725
Jabin, M.A., Ahmed, K., Rana, M.J., Paul, B.K., Luo, Y., Vigneswaran, D.: Titanium-coated dual-core D-shaped SPR-based PCF for hemoglobin sensing. Plasmonics 14(6), 1601–1610 (2019). https://doi.org/10.1007/s11468-019-00961-6
Shanthi, M., Seyezhai, R.: Investigation and performance studies of optical properties of nanocomposite spiral-shaped photonic crystal fiber (S-PCF). Plasmonics 15(2), 525–533 (2020). https://doi.org/10.1007/s11468-019-01066-w
Fan, Z., Li, S., Liu, Q., Chen, H., Wang, X.: Plasmonic broadband polarization splitter based on dual-core photonic crystal fiber with elliptical metallic nanowires. Plasmonics 11(6), 1565–1572 (2016). https://doi.org/10.1007/s11468-016-0211-8
Iqbal, F., Biswas, S., Bulbul, A.A.-M., Rahaman, H., Hossain, B.M., Rahaman, E.M., Awal, A.M.: Alcohol sensing and classification using PCF-based sensor. Sens. Bio Sens. Res. (2020). https://doi.org/10.1016/j.sbsr.2020.100384
Haider, F., Aoni, R.A., Ahmed, R., Chew, W.J., Mahdiraji, G.A.: Alphabetic-core assisted microstructure fiber based plasmonic biosensor. Plasmonics (2020). https://doi.org/10.1007/s11468-020-01220-9
Atakaramians, S., Afshar, S., Nagel, M., Ebendorff-Heidepriem, H., Fischer, B.M., Monro, T.M., Abbott, D.: Experimental investigation of dispersion properties of THz porous fibers. In: 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves, pp. 1–2. IEEE (2009). https://doi.org/10.1109/ICIMW.2009.5324967
Islam, R., Habib, M.S., Hasanuzzaman, G., Ahmad, R., Rana, S., Kaijage, S.F.: Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime. IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015)
Wu, Z., Shi, Z., Xia, H., Zhou, X., Deng, Q., Huang, J., Jiang, X., Wu, W.: Design of highly birefringent and low-loss oligoporous-core THz photonic crystal fiber with single circular air-hole unit. IEEE Photonics J. 8(6), 1–11 (2016)
Luo, J., Tian, F., Qu, H., Li, L., Zhang, J., Yang, X., Yuan, L.: Design and numerical analysis of a THz square porous-core photonic crystal fiber for low flattened dispersion, ultrahigh birefringence. Appl. Opt. 56(24), 6993–7001 (2017)
Hasan, M.I., Razzak, S.A., Hasanuzzaman, G., Habib, M.S.: Ultra-low material loss and dispersion flattened fiber for THz transmission. IEEE Photonics Technol. Lett. 26(23), 2372–2375 (2014)
Hasanuzzaman, G., Habib, M.S., Razzak, S.A., Hossain, M.A., Namihira, Y.: Low loss single-mode porous-core kagome photonic crystal fiber for THz wave guidance. J. Lightwave Technol. 33(19), 4027–4031 (2015)
Ali, S., Ahmed, N., Aljunid, S., Ahmad, B.: Ultra-flat low material loss porous core THz waveguide with near zero flat dispersion. Electron. Lett. 52(10), 863–865 (2016)
Ali, S., Ahmed, N., Aljunid, S., Ahmad, B.: Hybrid porous core low loss dispersion flattened fiber for THz propagation. Photonics Nanostructures Fundam. Appl. 22, 18–23 (2016)
Hossain, M.M., Talukder, M.A.: Optical magnetism in surface plasmon resonance–based sensors for enhanced performance. Plasmonics 16, 581–588 (2021)
Bulbul, A.A.-M., Imam, F., Awal, M., Mahmud, M.: A novel ultra-low loss rectangle-based porous-core PCF for efficient THz waveguidance: design and numerical analysis. Sensors 20(22), 6500 (2020)
Bulbul, A.A.-M., Kouzani, A.Z., Mahmud, M., Nahid, A.-A.: Design and numerical analysis of a novel rectangular PCF (R-PCF)-based biochemical sensor (BCS) in the THz Regime. Int. J. Opt. 2021, 5527724 (2021)
Tang, X., Jiang, Y., Sun, B., Chen, J., Zhu, X., Zhou, P., Wu, D., Shi, Y.: Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission. IEEE Photonics Technol. Lett. 25(4), 331–334 (2013)
Woyessa, G., Fasano, A., Markos, C., Stefani, A., Rasmussen, H.K., Bang, O.: Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing. Opt. Mater. Express 7(1), 286–295 (2017)
Guobin, R., Zhi, W., Shuqin, L., Yan, L., Shuisheng, J.: Full-vectorial analysis of complex refractive-index photonic crystal fibers. Opt. Express 12(6), 1126–1135 (2004)
Eid, M.M., Rashed, A.N.Z., Bulbul, A.A.-M., Podder, E.: Mono-rectangular core photonic crystal fiber (MRC-PCF) for skin and blood cancer detection. Plasmonics 16(3), 717–727 (2021)
Hasanuzzaman, G., Rana, S., Habib, M.S.: A novel low loss, highly birefringent photonic crystal fiber in THz regime. IEEE Photonics Technol. Lett. 28(8), 899–902 (2016)
Bulbul, A.A.-M., Rashed, A.N.Z., El-Hageen, H.M., Alatwi, A.M.: Design and numerical analysis of an extremely sensitive PCF-based sensor for detecting kerosene adulteration in petrol and diesel. Alex. Eng. J. 60(6), 5419–5430 (2021)
Rana, S., Ali, S., Ahmed, N., Islam, R., Aljunid, S.A.: Ultra-high birefringent and dispersion-flattened low loss single-mode terahertz wave guiding. IET Commun. 10(13), 1579–1583 (2016)
Acknowledgements
This study was funded by the Deanship of Scientific Research, Taif University Researchers Supporting Project number (TURSP-2020/08), Taif University, Taif, Saudi Arabia.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jibon, R.H., Bulbul, A.AM., Nahid, AA. et al. Design and numerical analysis of a photonic crystal fiber (PCF)-based flattened dispersion THz waveguide. Opt Rev 28, 564–572 (2021). https://doi.org/10.1007/s10043-021-00698-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10043-021-00698-w
Keywords
- Dispersion
- EML
- Confinement loss
- PCF
- THz waveguide