Skip to main content

Phase-shifting digital holography with burst imaging method

Abstract

The application of a burst imaging method to digital holography (DH) with multiple image capturing is firstly demonstrated. Nobody has discussed this approach explicitly, although the burst imaging method is not so uncommon. The burst imaging method intermittently captures several images with a high repetition rate followed by a relatively long rest time. If the light wave from an object has a much smaller complex amplitude change in the frame interval of an image sensor than the precision of the DH system, the wave can be regarded as being in a static state. As a result, this solves a fatal problem in DH for an object that moves or deforms while capturing multiple interference images. In this research, the burst imaging method was applied to phase-shifting DH, and it is simply implemented by a high-speed image sensor and a continuous phase shifting which is good for high-speed phase shifting. The measurement error was analytically solved for the movement speed of an object. Finally, the proposed method was experimentally used to observe an evaporating droplet of ethanol on a glass substrate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Goodman, J.W., Lawrence, R.W.: Digital image formation from electronically detected holograms. Appl. Phys. Lett. 11, 77–79 (1967)

    ADS  Article  Google Scholar 

  2. 2.

    Onural, L., Scott, P.D.: Digital recording of in-line holograms. Opt. Eng. 26, 1124–1132 (1987)

    ADS  Article  Google Scholar 

  3. 3.

    Schnars, U., Jüptner, W.: Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33, 179–181 (1994)

    ADS  Article  Google Scholar 

  4. 4.

    Kim, M.K.: Principles and techniques of digital holographic microscopy. SPIE Rev 1, 018005 (2010)

    Google Scholar 

  5. 5.

    Yamaguchi, I., Zhang, T.: Phase-shifting digital holography. Opt. Lett. 22, 1268–1270 (1997)

    ADS  Article  Google Scholar 

  6. 6.

    Yamaguchi, I., Matsumura, T., Kato, J.: Phase-shifting color digital holography. Opt. Lett. 27, 1108–1110 (2002)

    ADS  Article  Google Scholar 

  7. 7.

    Kato, J., Yamaguchi, I., Matsumura, T.: Multicolor digital holography with an achromatic phase shifter. Opt. Lett. 27, 1403–1405 (2002)

    ADS  Article  Google Scholar 

  8. 8.

    Ferraro, P., Grilli, S., Miccio, L., Alfieri, D., Nicola, S.D., Finizio, A., Javidi, B.: Full color 3-D imaging by digital holography and removal of chromatic aberrations. J. Display Technol. 4, 97–100 (2008)

    ADS  Article  Google Scholar 

  9. 9.

    Mann, C.J., Bingham, P.R., Paquit, V.C., Tobin, K.W.: Quantitative phase imaging by three-wavelength digital holography. Opt. Exp. 16, 9753–9764 (2008)

    ADS  Article  Google Scholar 

  10. 10.

    Kakue, T., Tahara, T., Ito, K., Shimozato, Y., Awatsuji, Y., Nishio, K., Ura, S., Kubota, T., Matoba, O.: Parallel phase-shifting color digital holography using two phase shifts. Appl. Opt. 48, H244–H250 (2009)

    ADS  Article  Google Scholar 

  11. 11.

    Tankam, P., Picart, P., Mounier, D., Desse, J.M., Li, J.: Method of digital holographic recording and reconstruction using a stacked color image sensor. Appl. Opt. 49, 320–328 (2010)

    ADS  Article  Google Scholar 

  12. 12.

    Ito, Y., Shimozato, Y., Xia, P., Tahara, T., Kakue, T., Awatsuji, Y., Nishio, K., Ura, S., Kubota, T., Matoba, O.: Four-wavelength color digital holography. J. Display Technol 8, 570–576 (2012)

    ADS  Article  Google Scholar 

  13. 13.

    Kiire, T., Barada, D., Sugisaka, J., Hayasaki, Y., Yatagai, T.: Color digital holography using a single monochromatic imaging sensor. Opt. Lett. 37, 3153–3155 (2012)

    ADS  Article  Google Scholar 

  14. 14.

    Kim, M.K.: Wavelength-scanning digital interference holography for optical section imaging. Opt. Lett. 24, 1693–1695 (1999)

    ADS  Article  Google Scholar 

  15. 15.

    Gass, J., Dakoff, A., Kim, M.K.: Phase imaging without 2π ambiguity by multiwavelength digital holography. Opt. Lett. 28, 1141–1143 (2003)

    ADS  Article  Google Scholar 

  16. 16.

    Yeom, S., Javidi, B., Ferraro, P., Alfieri, D., DeNicola, S., Finizio, A.: Three-dimensional color object visualization and recognition using multi-wavelength computational holography. Opt. Exp. 15, 9394–9402 (2007)

    ADS  Article  Google Scholar 

  17. 17.

    Pham, Q.D., Hasegawa, S., Kiire, T., Barada, D., Yatagai, T., Hayasaki, Y.: Selectable-wavelength low-coherence digital holography with chromatic phase shifter. Opt. Exp. 20, 19744–19756 (2012)

    ADS  Article  Google Scholar 

  18. 18.

    Chen, S., Ryu, J., Lee, K., Zhu, Y.: Swept source digital holographic phase microscopy. Opt. Lett. 41, 665–668 (2016)

    ADS  Article  Google Scholar 

  19. 19.

    Massig, J.H.: Digital off-axis holography with a synthetic aperture. Opt. Lett. 27, 2179–2181 (2002)

    ADS  Article  Google Scholar 

  20. 20.

    Mico, V., Zalevsky, Z., García-Martínez, P., García, J.: Synthetic aperture superresolution with multiple off-axis holograms. J. Opt. Soc. Am. A 23, 3162–3170 (2006)

    ADS  Article  Google Scholar 

  21. 21.

    Liu, C., Liu, Z.G., Bo, F., Wang, Y., Zhu, J.Q.: Super-resolution digital holographic imaging method. Appl. Phys. Lett. 81, 3143–3145 (2002)

    ADS  Article  Google Scholar 

  22. 22.

    Mico, V., Zalevsky, Z., García-Martínez, P., García, J.: Superresolved imaging in digital holography by superposition of tilted wavefronts. Appl. Opt. 45, 822–828 (2006)

    ADS  Article  Google Scholar 

  23. 23.

    Paturzo, M., Merola, F., Grilli, S., Nicola, S.D., Finizio, A., Ferraro, P.: Super-resolution in digital holography by a two-dimensional dynamic phase grating. Opt. Exp. 16, 17107–17118 (2008)

    ADS  Article  Google Scholar 

  24. 24.

    Grosse, M., Buehl, J., Babovsky, H., Kiessling, A., Kowarschik, R.: 3D shape measurement of macroscopic objects in digital off-axis holography using structured illumination. Opt. Lett. 35, 1233–1235 (2010)

    ADS  Article  Google Scholar 

  25. 25.

    Gao, P., Pedrini, G., Osten, W.: Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy. Opt. Lett. 38, 1328–1330 (2013)

    ADS  Article  Google Scholar 

  26. 26.

    Kashter, Y., Vijayakumar, A., Miyamoto, Y., Rosen, J.: Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination. Opt. Lett. 41, 1558–1561 (2016)

    ADS  Article  Google Scholar 

  27. 27.

    Quan, C., Kang, X., Tay, C.-J.: Speckle noise reduction in digital holography by multiple holograms. Opt. Eng. 46, 115801 (2007)

    ADS  Article  Google Scholar 

  28. 28.

    Colomb, T., Dahlgren, P., Beghuin, D., Cuche, E., Marquet, P., Depeursinge, C.: Polarization imaging by use of digital holography. Appl. Opt. 41, 27–37 (2002)

    ADS  Article  Google Scholar 

  29. 29.

    Colomb, T., Cuche, E., Montfort, F., Marquet, P., Depeursinge, C.: Jones vector imaging by use of digital holography: simulation and experimentation. Opt. Commun. 231, 137–147 (2004)

    ADS  Article  Google Scholar 

  30. 30.

    Nomura, T., Murata, S., Nitanai, E., Numata, T.: Phase-shifting digital holography with a phase difference between orthogonal polarizations. Appl. Opt. 45, 4873–4877 (2006)

    ADS  Article  Google Scholar 

  31. 31.

    Quan, X., Nitta, K., Matoba, O., Xia, P.: Phase and fluorescence imaging by combination of digital holographic microscopy and fluorescence microscopy. Opt. Rev. 22, 349–353 (2015)

    Article  Google Scholar 

  32. 32.

    Schwede, R., Babovsky, H., Kiessling, A., Kowarschik, R.: Measurement of three-dimensional deformation vectors with digital holography and stereophotogrammetry. Opt. Lett. 37, 1943–1945 (2012)

    ADS  Article  Google Scholar 

  33. 33.

    Nozawa, J., Okamoto, A., Shibukawa, A., Takabayashi, M., Tomita, A.: Two-channel algorithm for single-shot, high-resolution measurement of optical wavefronts using two image sensors. Appl. Opt. 54, 8644–8652 (2015)

    ADS  Article  Google Scholar 

  34. 34.

    Awatsuji, Y., Sasada, M., Kubota, T.: Parallel quasi-phase-shifting digital holography. Appl. Phys. Lett. 85, 1069–1071 (2004)

    ADS  Article  Google Scholar 

  35. 35.

    Novak, M., Millerd, J., Brock, N., North-Morris, M., Hayes, J., Wyant, J.C.: Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer. Appl. Opt. 44, 6861–6868 (2005)

    ADS  Article  Google Scholar 

  36. 36.

    Hennig, J., Hodapp, M.: Burst imaging. MAGMA 1, 39–48 (1993)

    Article  Google Scholar 

  37. 37.

    Jakob, P.M., Ziegler, A., Doran, S.J., Décorps, M.: Echo-time-encoded burst imaging (EBI): a novel technique for spectroscopic imaging. Magn. Reson. Med. 33, 573–578 (1995)

    Article  Google Scholar 

  38. 38.

    Levoy, M.: Experimental platforms for computational photography. IEEE Comp. Graph. and Applications 30, 81–87 (2010)

    Article  Google Scholar 

  39. 39.

    Hasinoff, S.W., Sharlet, D., Geiss, R., Adams, A., Barron, J.T., Kainz, F., Chen, J., Levoy, M.: Burst photography for high dynamic range and low-light imaging on mobile cameras. ACM Trans. Graph 35, 192 (2016)

    Article  Google Scholar 

  40. 40.

    Park, J., Kim, S.-W.: Vibration-desensitized interferometer by continuous phase shifting with high-speed fringe capturing. Opt. Lett. 35, 19–21 (2010)

    ADS  Article  Google Scholar 

  41. 41.

    Kikuchi, Y., Barada, D., Kiire, T., Yatagai, T.: Doppler phase-shifting digital holography and its application to surface shape measurement. Opt. Lett. 35, 1548–1550 (2010)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoshio Hayasaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ujiie, T., Hayasaki, Y. Phase-shifting digital holography with burst imaging method. Opt Rev 28, 538–545 (2021). https://doi.org/10.1007/s10043-021-00692-2

Download citation

Keywords

  • Interferometry
  • Topography
  • Liquid droplet
  • Drying
  • Evaporation