Spatial mode exchange technique using volume holograms with a random optical diffuser for reduction of crosstalk

Abstract

In mode-division multiplexing systems, the transmission quality is restricted by the differential mode delay (DMD). We previously proposed a spatial mode exchange technique using volume holograms (VHET) to reduce the DMD. VHET can be used for the exchange of multiple spatial modes with different transmission speeds using a single device. However, in VHET, incidents of cross-talk (XT) caused by non-target holograms severely degrade the exchange performance. To address this issue, we propose a spatial mode exchange technique that uses volume holograms in combination with a random optical diffuser. By scattering the intensity distribution of the signal beam uniformly using a random optical diffuser, high exchange performance can be attained due to the reduction in the influence of non-targeted holograms. We confirmed the basic operation of the proposed scheme by considering the crosstalk component coupled to the few-mode fiber in a mode-division multiplexing system. The simulation results show that the maximum XTs are significantly suppressed to − 15.8 dB.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Essiambre, R.J., Tkach, R.W.: Capacity trends and limits of optical communication networks. Proc. IEEE 100(5), 1035–1055 (2012)

    Article  Google Scholar 

  2. 2.

    M. Secondini, E. Forestieri, “The limits of the nonlinear Shannon limit,” Proc. Optical Fiber Communication Conf. (OFC), 2016, Th3D.1.

  3. 3.

    Kashyap, R., Blow, K.J.: Observation of catastrophic self-propelled self-focusing in optical fibres. Electron. Lett. 24(1), 47–49 (1988)

    ADS  Article  Google Scholar 

  4. 4.

    Berdagué, S., Facq, P.: Mode division multiplexing in optical fibers. Appl. Opt. 21(11), 1950–1955 (1982)

    ADS  Article  Google Scholar 

  5. 5.

    Ryf, R., Randel, S., Gnauck, A.H., Bolle, C., Sierra, A., Mumtaz, S., Esmaeelpour, M., Burrows, E.C., Essiambre, R.-J., Winzer, P.J., Peckham, D.W., McCurdy, A.H., Lingle, R.: Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing. J. Light. Technol. 30(4), 521–531 (2012)

    ADS  Article  Google Scholar 

  6. 6.

    Okamoto, A., Morita, K., Wakayama, Y., Tanaka, J., Sato, K.: Mode division multiplex communication technology based on dynamic volume hologram and phase conjugation. Proc. SPIE 7716, 771627 (2010)

    Article  Google Scholar 

  7. 7.

    Sakamoto, T., Mori, T., Yamamoto, T., Tomita, S.: Differential mode delay managed transmission line for WDM-MIMO system using multi-step index fiber. J. Light. Technol. 30(17), 2783–2787 (2012)

    ADS  Article  Google Scholar 

  8. 8.

    Sakamoto, T., Mori, T., Yamamoto, T., Hanzawa, N., Tomita, S., Yamamoto, F., Saitoh, K., Koshiba, M.: Mode-division multiplexing transmission system with DMD-independent low complexity MIMO processing. J. Light. Technol. 31(13), 2192–2199 (2013)

    ADS  Article  Google Scholar 

  9. 9.

    Y. Wakayama, D. Soma, K. Igarashi, H. Taga and T. Tsuritani, “Intermediate mode interchange for reduction of differential mode-group delay in weakly-coupled 6-mode fiber transmission line,” Proc. OFC2016, M3E.6 (2016).

  10. 10.

    S. Zhang, A. Okamoto, K. Ogawa and A. Tomita, “Spatial mode exchange technique using volume hologram with a phase plate,” Technical Digest of ISOM 2019, Tu-J-19 (2019).

  11. 11.

    A. Shibukawa, A. Okamoto, Y. Wakayama, A. Tomita, H. Funakoshi, K. Sato (2013) Digital image diffusion technique for suppressing interpage crosstalk in holographic data storage. Jpn. J. Appl. Phys. 52:09LD03.

  12. 12.

    Wakayama, Y., Okamoto, A., Kawabata, K., Tomita, A., Sato, K.: Mode demultiplexer using angularly multiplexed volume holograms. Opt. Express 21(10), 12920–12933 (2013)

    ADS  Article  Google Scholar 

  13. 13.

    Shibukawa, A., Okamoto, A., Takabayashi, M., Tomita, A.: Spatial cross modulation method using a random diffuser and phase-only spatial light modulator for constructing arbitrary complex fields. Opt. Express 22(4), 3968–3982 (2014)

    ADS  Article  Google Scholar 

  14. 14.

    Tanaka, J., Okamoto, A., Kitano, M.: Development of image-based simulation for holographic data storage system by fast Fourier transform beam-propagation method. Jpn. J. Appl. Phys. 48, 03A028 (2009)

    Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (Grant Number JP19K04366).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shuanglu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Okamoto, A., Shiba, T. et al. Spatial mode exchange technique using volume holograms with a random optical diffuser for reduction of crosstalk. Opt Rev 28, 181–189 (2021). https://doi.org/10.1007/s10043-021-00648-6

Download citation

Keywords

  • Mode division multiplexing
  • Differential mode delay
  • Spatial mode exchange technique
  • Volume hologram
  • Random optical diffuser