Switchable band-pass filter for terahertz waves using VO2-based metamaterial integrated with silicon substrate

Abstract

Terahertz (THz) waves are a promising candidate for detection, imaging, and advanced communications with ultrafast transmission speed. To develop THz technologies, miniaturized devices for controlling THz waves are essential. In this study, a high-performance vanadium dioxide (VO2)-based switchable band-pass metamaterial integrated with a silicon substrate for THz waves is designed and fabricated. In the “on” state, it offers a passband with a 70% depth and a 0.34 THz bandwidth at 0.56 THz frequency. Additionally, it can be switched thermally to a mirror for 0.1–2.0 THz waves in the “off” state by the phase transition effect of the VO2 film. Moreover, the relationship between the line width and spectra of the device is investigated by simulation. The wheel-shaped gold structure with round corners provides the filter with tractability during fabrication. Furthermore, the silicon substrate allows the metamaterial to be readily miniaturized and integrated into micro-electromechanical systems (MEMS) technology. This filter is expected to be favorable in frequency-selective THz applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Availability of data and materials

All the data and material are freely available to any scientist wishing to use them for non-commercial purposes, without breaching participant confidentiality.

References

  1. 1.

    Bawuah, P., Zeitler, J.A., Ketolainen, J., Peiponen, K.E.: Terahertz absorption spectra of commonly used antimalarial drugs. Opt Rev 25(3), 444–449 (2018)

    Article  Google Scholar 

  2. 2.

    Nagatsuma, T., Ducournau, G., Renaud, C.C.: Advances in terahertz communications accelerated by photonics. Nat Photonics 10(6), 371–379 (2016)

    ADS  Article  Google Scholar 

  3. 3.

    Ahi, K.: A method and system for enhancing the resolution of terahertz imaging. Measurement 138, 614–619 (2019)

    ADS  Article  Google Scholar 

  4. 4.

    Akyildiz, I.F., Jornet, J.M., Han, C.: Terahertz band: Next frontier for wireless communications. Phys Commun 12, 16–32 (2014)

    Article  Google Scholar 

  5. 5.

    Akka, M.A.: Terahertz wireless data communication. Wirel Netw 25(1), 145–155 (2019)

    Article  Google Scholar 

  6. 6.

    Li, X., Yu, J., Zhao, L., Wang, K., Zhou W., and Xiao, J.: 1-Tb/s photonics-aided vector millimeter-wave signal wireless delivery at D-Band. In Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 1-3 (2018)

  7. 7.

    Sarieddeen, H., Saeed, N., Al-Naffouri, T.Y., Alouini, M.: Next generation terahertz communications: A rendezvous of sensing, imaging, and localization. IEEE Commun Mag 58(5), 69–75 (2020)

    Article  Google Scholar 

  8. 8.

    Rappaport, T.S., Xing, Y.C., Kanhere, O., Ju, S.H., Madanayake, A., Mandal, S., Alkhateeb, A., Trichopoulos, G.C.: Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access 7, 78729–78757 (2019)

    Article  Google Scholar 

  9. 9.

    Ishii, Y., Takida, Y., Kanamori, Y., Minamide, H., Hane, K.: Fabrication of metamaterial absorbers in THz region and evaluation of the absorption characteristics. Electr Commun Jpn 100(4), 15–24 (2017)

    Article  Google Scholar 

  10. 10.

    Han, Z.L., Ohno, S., Tokizane, Y., Nawata, K., Notake, T., Takida, Y., Minamide, H.: Thin terahertz-wave phase shifter by flexible film metamaterial with high transmission. Opt Express 25(25), 31186–31196 (2017)

    ADS  Article  Google Scholar 

  11. 11.

    Ironside, D.J., Salas, R., Chen, P.Y., Le, K.Q., Alú, A., Bank, S.R.: Enhancing THz generation in photomixers using a metamaterial approach. Opt Express 27(7), 9481–9494 (2019)

    ADS  Article  Google Scholar 

  12. 12.

    Zhang, Y.B., Cen, C.L., Liang, C.P., Zao, Y., Chen, X.F., Li, M.W., Zhou, Z.J., Tang, Y.J., Yi, Y.J., Zhang, G.F.: Dual-band switchable terahertz metamaterial absorber based on metal nanostructure. Results Phys 14, 102422 (2019)

    Article  Google Scholar 

  13. 13.

    Singh, R., Al-Naib, I.A., Koch, M., Zhang, W.: Asymmetric planar terahertz metamaterials. Opt Express 18(12), 13044–13050 (2010)

    ADS  Article  Google Scholar 

  14. 14.

    Azad, A.K., Dai, J., Zhang, W.: Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Opt Lett 31(5), 634–636 (2006)

    ADS  Article  Google Scholar 

  15. 15.

    Soukoulis, C.M., Koschny, T., Zhou, J., Kafesaki, M., Economou, E.N.: Magnetic response of split ring resonators at terahertz frequencies. Phys Status Solidi B 244(4), 1181–1187 (2007)

    ADS  Article  Google Scholar 

  16. 16.

    Moser, H.O., Casse, B.D.F., Wilhelmi, O., Saw, B.T.: Terahertz response of a microfabricated rod–split-ring-resonator electromagnetic metamaterial. Phys Rev Lett 94, 063901 (2005)

    ADS  Article  Google Scholar 

  17. 17.

    Lin, T., Wang, L., Wang, X., Zhang, Y., Yu, Y.: Influence of lattice distortion on phase transition properties of polycrystalline VO2 thin film. Appl Surf Sci 379, 179–185 (2016)

    ADS  Article  Google Scholar 

  18. 18.

    Huang, Y., Zhang, D., Liu, Y., Jin, J., Yang, Y., Chen, T., Guan, H., Fan, P., Lv, W.: Phase transition analysis of thermochromic VO2 thin films by temperature-dependent Raman scattering and ellipsometry. Appl Surface Sci 31(456), 545–551 (2018)

    ADS  Article  Google Scholar 

  19. 19.

    Nakajima, M., Takubo, N., Hiroi, Z., Ueda, Y., Suemoto, T.: Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy. Appl Phys Lett 92(1), 6853 (2008)

    Article  Google Scholar 

  20. 20.

    Cho, C.R., Cho, S., Vadim, S., Jung, R., Yoo, I.: Current-induced metal-insulator transition in VOx thin film prepared by rapid-thermal-annealing. Thin Solid Films 495(1–2), 375–379 (2006)

    ADS  Article  Google Scholar 

  21. 21.

    He, Q., Zhang, D., Huang, Y., Yang, Y., Guan, H., Jin, J., and Fan, P.: Employing Ni-Cr co-doping to prepare low phase transition temperature VO2 film. In Proc. SPIE International Conference on Thin Film Physics and Applications (TFPA 2019), Qingdao, CA, China, 110640G (2019)

  22. 22.

    Cao, X., Wang, N., Magdassi, S., Mandler, D., Long, Y.: Europium doped vanadium dioxide material: reduced phase transition temperature enhanced luminous transmittance and solar modulation. Sci Adv Mater 6(3), 558–561 (2014)

    Article  Google Scholar 

  23. 23.

    Wang, N., Duchamp, M., Dunin-Borkowski, R.E., Liu, S., Zeng, X., Cao, X., Long, Y.: Terbium-doped VO2 thin films: reduced phase transition temperature and largely enhanced luminous transmittance. Langmuir 32(3), 759–764 (2016)

    Article  Google Scholar 

  24. 24.

    Runteanu, A., Leroy, J., Humbert, G., Férachou, D., Orlianges, J. C., Champeaux, C., and Blondy, P.: Tunable terahertz metamaterials based on metal-insulator phase transition of VO2 layers. In proc. IEEE MTT-S Int. Microw. Symp. dig, Montreal, QC, Canada, 1-3 (2012)

  25. 25.

    Shin, J.H., Han, S.P., Song, M., Ryu, H.C.: Gradual tuning of the terahertz passband using a square-loop metamaterial based on a W-doped VO2 thin film. Appl Phys Express 12, 032007 (2019)

    ADS  Article  Google Scholar 

  26. 26.

    Park, D.J., Shin, J.H., Park, K.H., Ryu, H.C.: Electrically controllable THz asymmetric split-loop resonator with an outer square loop based on VO2. Opt Express 26(13), 17397 (2018)

    ADS  Article  Google Scholar 

  27. 27.

    Zhang, C., Zhou, G., Wu, J., Tang, Y., Wen, Q., Li, S.X., Han, J.G., Jin, B.B., Chen, J., Wu, P.: Active control of terahertz waves using vanadium-dioxide-embedded metamaterials. Phys Rev Appl 11, 054016 (2019)

    ADS  Article  Google Scholar 

  28. 28.

    Liu, M.K., Hwang, H.Y., Tao, H., Strikwerda, A.C., Fan, K., Keiser, G.R., Sternbach, A.J., West, K.G., Kittiwatanakul, S., Lu, J.W., Wolf, S.A., Omenetto, F.G., Zhang, X., Nelson, K.A., Averitt, R.D.: Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487(7407), 345–348 (2012)

    ADS  Article  Google Scholar 

  29. 29.

    Kanamori, Y., Hokari, R., Hane, K.: MEMS for plasmon control of optical Metamaterials. IEEE J Sel Top Quantum Electron 21(4), 2701410 (2015)

    Article  Google Scholar 

  30. 30.

    Padilla, W.J., Taylor, A.J., Highstrete, C., Lee, M., Averitt, R.D.: Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev. Lett 96, 107401 (2006)

    ADS  Article  Google Scholar 

  31. 31.

    Movchan, A.B., Guenneau, S.: Split-ring resonators and localized modes. Phys Rev B 70, 125116 (2004)

    ADS  Article  Google Scholar 

  32. 32.

    Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech 47(11), 2075–2084 (1999)

    ADS  Article  Google Scholar 

  33. 33.

    Duvillaret, L., Garet, F., Coutaz, J.L.: A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J Sel Top Quantum Electron 2(3), 739–746 (1996)

    ADS  Article  Google Scholar 

  34. 34.

    Azad, A.K., Taylor, A.J., Smirnova, E., O’Hara, J.F.: Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators. Appl Phys Lett 92, 011119 (2008)

    ADS  Article  Google Scholar 

  35. 35.

    Hokari, R., Kanamori, Y., Hane, K.: Comparison of electromagnetically induced transparency between silver, gold, and aluminum metamaterials at visible wavelengths. Opt Express 22(3), 3526–3537 (2014)

    ADS  Article  Google Scholar 

  36. 36.

    Hokari, R., Kanamori, Y., Hane, K.: Fabrication of planar metamaterials with sharp and strong electromagnetically induced transparency-like characteristics at wavelengths around 820 nm. J Optical Society America B 31(5), 1000–1005 (2014)

    ADS  Article  Google Scholar 

  37. 37.

    Nakamura, K., Hokari, R., Kanamori, Y., Hane, K.: Fabrication of electromagnetically induced transparency like metamaterials in THz region and evaluation of the transmittance characteristics. IEEJ Transactions Sensors Micromachines 135(11), 454–459 (2015)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate Dr. Y. Pan and Dr. C. Li for the advice on processing the measured data. The authors would like to thank engineer Z. Q. Wang for assistance with the THz spectral measurements. The authors would like to thank China Communication Technology Co., Ltd. for supplying the THz measured system.

Funding

This work was supported in part by the Science and Technology Project of Shenzhen, China, under Grant JCYJ20180305124038881 and in part by the MEXT KAKENHI, Japan, under Grant 16H04342.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Kanamori.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., He, Q., Zhang, D. et al. Switchable band-pass filter for terahertz waves using VO2-based metamaterial integrated with silicon substrate. Opt Rev 28, 92–98 (2021). https://doi.org/10.1007/s10043-020-00637-1

Download citation

Keywords

  • Terahertz filter
  • VO2-based metamaterial
  • Phase transition
  • Silicon substrate