Skip to main content
Log in

Nonlinearities effects on optical MIMO systems

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Multimode fibers (MMF) are enjoying a renewed attention boosted by recent advances in multimode complex nonlinear optics. Reason behind nonlinearity is occurred either due to intensity dependence of the medium refractive index or to inelastic-scattering phenomenon. The most commonly occurred non-linear effects in optical Multiple Input Multiple Output (O-MIMO) are the Kerr, Stimulated Brillouin Scattering (SBS) and Stimulated Raman Scattering (SRS) effects. The impact of Kerr, SBS and SRS instigate distortions to the optical signal transmission over MIMO transmission system. In this work, we focus on the impact of the optical Kerr, SBS and SRS effects on the overall performance of a MIMO transmission system. It is observed that in O-MIMO system, nonlinear effects degrade the system performance since many channels propagate simultaneously. They can result in pulse distortion and crosstalk between channels. Here, a comparative study between MIMO communication system with and without nonlinearities allows an accurate performance evaluation. The comparison is performed using Q-factor and Bit Error Rate (BER). The outcome is analyzed using OptiSystem software tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Mrabet, H., Attia, R., Dayoub, I.: Influence of wavelength and launching condition on frequency response of optical silica fibers. In: Inter. Conference on Transparent Optical Networks, 2nd IEEE-ICTON-MW’08, Marrakech, Morocco, pp 1–6 (2008)

  2. Dayoub, I., Zaouche, A., Rouvaen, J.M., Lethien, C., Vilcot, J.P., Decoster, D.: Wireless Systems Radio-optic demonstrator for distributed antenna system indoor wireless applications using low-cost VCSELs. Eur. Trans. Telecommun. 18(7), 811–814 (2007)

    Article  Google Scholar 

  3. Mrabet, H., Attia, R., Dayoub, I.: Chromatic and modal effect of graded-index optical fiber in LAN context. In: Wireless and Optical Communications Conference, IEEE-WOCC’09, 18th Annual. Newark, New Jersy. USA (2009)

  4. Chatti, I., Baklouti, F., Chekir, F., Attia, R.: Comparative analysis of MIMO based FSO and MIMO based MGDM communications. Opt. Rev. 26(6), 632–643 (2019)

    Article  Google Scholar 

  5. Baklouti, F., Dayoub, I., Haxha, S., Attia, R., Aragon, A.: Novel Method for improving the capacity of optical MIMO using MGDM. IEEE Photonics J. 6(6), 1–15 (2014)

    Article  Google Scholar 

  6. Awad, M., Dayoub, I., M’Foubat, A.O., Rouvaen, J.M.: The inter-modes mixing effects in Mode Group Diversity Multiplexing. Opt. Commun. 282, 3908–3917 (2012)

    Article  ADS  Google Scholar 

  7. Awad, M., Dayoub, I., Okassa, A., Rouvaen, J.M., Vilcot, J.P.: RoF & Multi services in single-MMF LAN using Mode Group Diversity multiplexing. In: Pro. 3rd Inter. Conference on Information and Communication Technologies: from Theory to Applications. ICTTA'08. Damascus. Syria. pp 1–6 (2008)

  8. Awad, M., Hamouda, W., Dayoub, I.: Throughput maximization approach for O-MIMO systems using MGDM Technique. In: Globecom 2012-Optical Networks and systems symposium, 2953–2958 (2012)

  9. Dayoub, I., Zouin, Y., Okasa M’Foubat, A., Rouvaen, J.M., Vilcot, J.P.: Radio over Fibre networks: low cost solution for different applications and emerging technologies. In: Information and Communication Technologies: From Theory to Applications (ICTTA’06), Damascus-Syria, 2537–2542 (2006)

  10. Awad, M., Dayoub, I., Hammouda, W., Rouvaen, J.M.: Adaptation of the mode group diversity multiplexing, technique for radio signal transmission over multimode fiber. J Opt Commun Netw 3(1), 1–9 (2011)

    Article  Google Scholar 

  11. Mrabet, H., Dayoub, I., Attia, R., Al-Holou, N., Tatkeu, C.: Impact of chromatic and modal dispersion on frequency response of optical Multimode Fibers. In: IEEE Symposium on Computers and Communications. ISCC’09, Sousse, Tunisia, 188–194 (2009)

  12. Ellis, A.D., McCarthy, M.E., Al Khateeb, M.A.Z., Sorokina, M., Doran, N.J.: Performance limits in optical communications due to fiber nonlinearity. Adv. Opt. Photonics 9(3), 429–477 (2017)

    Article  ADS  Google Scholar 

  13. Ndujiuba, C.U., John, S.N.: Analysis and applications of nonlinearities in optical fibres in wavelength division multiplexed systems. Int. J. Optoelectron. Eng. 5(1), 1–10 (2015)

    Google Scholar 

  14. Kaur, A., Mahajan, A.: Review on comparative study of Kerr effect on optical WDM network. Int. J. Adv. Res. Sci. Eng. 6(5), 15–21 (2017)

    Google Scholar 

  15. Garmire, E.: Perspectives on Stimulated Brillouin scattering. New J. Phys. 19, 2–17 (2017)

    Article  Google Scholar 

  16. Ballato, J., Dragic, P.: Materials development for next generation optical fiber. J. Mater. 7(6), 4411–4430 (2014)

    Article  ADS  Google Scholar 

  17. Mrabet, H., Dayoub, I., Attia, R., Hammouda, W.: Wavelength and beam launching effects on silica optical fiber in Local Area Network. J. Opt. Commun. 283(2), 4234–4241 (2010)

    Article  ADS  Google Scholar 

  18. Fang, Y., Furniss, D., Jayasuriya, D., Parnell, H., Tang, Z.Q., Gibson, D., Bayya, S., Sanghera, J., Seddon, A.B., Benson, T.M.: Methods for determining the refractive indices and thermo-optic coefficients of chalcogenide glasses at MIR wavelengths. J. Opt. Mater. X 2(1000302), 2–13 (2019)

    Google Scholar 

  19. Lancry, M., Poumellec, B., Gonnet, C.: Low loss multimode optical fibers via fictive temperature reduction by means of outer-cladding Na dopping. J. Lightwave Technol. 34, 1238–1241 (2016)

    Article  ADS  Google Scholar 

  20. Li, G., Zhang, S., Zentgraf, T.: Nonlinear photonic metasurfaces. Nat Rev Mater 2(5), 17010 (2017)

    Article  ADS  Google Scholar 

  21. Chatti, I., Baklouti, F., Chekir, F., Attia, R.: Including nonlinear SPM and XPM effects on the optical MIMO systems. In: IEEE International Conference on Smart Applications, Communications and Networking (SmartNets) (2019)

  22. Kabacinski, P., Kardas, T.M., Stepanenko, Y., Radzewicz, C.: Nonlinear refractive index measurement by SPM-induced phase regression. Opt. Express 27(8), 11018–11028 (2019)

    Article  ADS  Google Scholar 

  23. Willner, A.E., Khaleghi, S., Chitgarha, M.R., Yilmaz, O.F.: All-optical signal processing. J. Lightwave Technol. 32(4), 660–680 (2014)

    Article  ADS  Google Scholar 

  24. Bai, Z., et al.: Stimulated Brillouin Scattering materials, experimental design and applications. Rev. J. Opt. Mater. 75, 626–645 (2018)

    Article  Google Scholar 

  25. Garmire, E.: Stimulated Brillouin review invented 50 years ago and applied today. Int. J. Opt. (2018). https://doi.org/10.1155/2018/2459501

    Article  Google Scholar 

  26. Renninger, W.H., Shin, H., Behunin, R.O., Kharel, P., Kittlaus, E.A., Rakich, P.T.: Forward Brillouin scattering in hollow-core photonic bandgap fibers. New J. Phys. 18, 025008 (2016)

    Article  ADS  Google Scholar 

  27. Krishnan, R., Gayathri Prasad, S.: Design and analysis of Stimulated Brillouin scattering in fiber optic system for distributed sensing using Optisystem. Int. J. Sci. Res. 4, 1573–1578 (2015)

    Google Scholar 

  28. Waliaa, K., Tyagib, Y., Tripathib, D., Alshehric, A.M., Ahmad, N.: Stimulated Raman scattering of high-power beam in thermal quantum plasma. Optik Int. J. Light Electron Opt. 195, 163166 (2019)

    Article  Google Scholar 

  29. Tipping, W.J., Lee, M., Serrels, A., Brunton, V.G., Hulme, A.N.: Stimulated Raman Scattering microscopy: an emerging tool for drug discovery. J. Chem. Soc. Rev. 45(28), 2003–2370 (2016)

    Google Scholar 

  30. Moura, C.C., Tare, R.S., Oreffo, R.O.C., Mahajan, S.: Raman Spectroscopy and coherent anti-stokes Raman Scattering imaging prospective tools for monitoring skletal cells and skeletal regeneration. J. R. Soc. Interface 13, 20160182 (2018)

    Article  Google Scholar 

  31. Cheng, C.-Y., Lin, J.-H., Liao, T.-Y., Yang, C.-Y.: Characteristics of f noise-like pulse with broad bandwidth based on cascaded Raman scattering. Opt. Express 26(24), 31808–31816 (2018)

    Article  ADS  Google Scholar 

  32. Kale, R.V., Ingale, P.M., Murade, R.T.: Comparison of SRS and SBS (Nonlinear Scattering), in optical fiber. Int. J. Recent Technol. Eng. 2(1), 118–122 (2013)

    Google Scholar 

  33. Aulia, T. D. F., Astharini, D., Lubis, A., Syahriar, A.: Performance analysis of fiber with solitons parameters using OptiSystem. In: 16th Inter conf on Instrumentation, Control and Automation (ICA), Bandung, Indonesia, pp 142–146 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faîçal Baklouti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatti, I., Baklouti, F., Chekir, F. et al. Nonlinearities effects on optical MIMO systems. Opt Rev 28, 73–91 (2021). https://doi.org/10.1007/s10043-020-00636-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-020-00636-2

Keywords

Navigation