Spectral and temporal optical signal generation using randomly distributed quantum dots


Quantum dots (QDs) have a great potential for realizing information processing because of their signal-modulation capability based on energy transfer. We present a method for generating diverse temporal and spectral signals based on the energy transfer between multiple QDs. The method uses randomly distributed QDs, so it is not necessary to precisely arrange a QD network. With multiple energy transfers between QDs, a variety of signals within the QD network can be generated by optical inputs. Experimental results revealed that fluorescence decays of dense QDs were faster when the density of QDs or the irradiation intensity decreased. Furthermore, depending on the positions, stacked QDs showed different spectral responses. The randomly distributed QDs can generate diverse signals, which is essential for signal processing to handle temporal information.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Naruse, M.: Nanophotonic information physics. Springer, Berlin (2016)

    Google Scholar 

  2. 2.

    Tate, N., Naruse, M., Nomura, W., Kawazoe, T., Yatsui, T., Hoga, M., Ohyagi, Y., Sekine, Y., Fujita, H., Ohtsu, M.: Demonstration of modulatable optical near-field interactions between dispersed resonant quantum dots. Opti. Express 19(19), 18260–18271 (2011)

    ADS  Article  Google Scholar 

  3. 3.

    Naruse, M., Holmström, P., Kawazoe, T., Akahane, K., Yamamoto, N., Thylén, L., Ohtsu, M.: Energy dissipation in energy transfer mediated by optical near-field interactions and their interfaces with optical far-fields. Appl. Phys. Lett. 100(24), 241102 (2012)

    ADS  Article  Google Scholar 

  4. 4.

    Naruse, M., Aono, M., Kim, S.J., Kawazoe, T., Nomura, W., Hori, H., Hara, M., Ohtsu, M.: Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems. Phys. Revi. B 86(12), 125407 (2012)

    ADS  Article  Google Scholar 

  5. 5.

    Michler, P., Kiraz, A., Becher, C., Schoenfeld, W., Petroff, P., Zhang, L., Hu, E., Imamoglu, A.: A quantum dot single-photon turnstile device. Science 290(5500), 2282–2285 (2000)

    ADS  Article  Google Scholar 

  6. 6.

    Peter, E., Senellart, P., Martrou, D., Lemaître, A., Hours, J., Gérard, J.M., Bloch, J.: Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95(6), 067401 (2005)

    ADS  Article  Google Scholar 

  7. 7.

    Huang, Y.P., Velev, V., Kumar, P.: Quantum frequency conversion in nonlinear microcavities. Opt. lett. 38(12), 2119–2121 (2013)

    ADS  Article  Google Scholar 

  8. 8.

    Algar, W.R., Wegner, D., Huston, A.L., Blanco-Canosa, J.B., Stewart, M.H., Armstrong, A., Dawson, P.E., Hildebrandt, N., Medintz, I.L.: Quantum dots as simultaneous acceptors and donors in time-gated forster resonance energy transfer relays: characterization and biosensing. J. Am. Chem. Soc. 134(3), 1876–1891 (2012)

    Article  Google Scholar 

  9. 9.

    Zheng, K., Zidek, K., Abdellah, M., Torbjörnsson, M., Chábera, P., Shao, S., Zhang, F., Pullerits, T.: Fast monolayer adsorption and slow energy transfer in cdse quantum dot sensitized zno nanowires. J. Phys. Chem. A 117(29), 5919–5925 (2012)

    Article  Google Scholar 

  10. 10.

    Claussen, J.C., Hildebrandt, N., Susumu, K., Ancona, M.G., Medintz, I.L.: Complex logic functions implemented with quantum dot bionanophotonic circuits. ACS Appl. Mater. Interfaces 6(6), 3771–3778 (2013)

    Article  Google Scholar 

  11. 11.

    Claussen, J.C., Algar, W.R., Hildebrandt, N., Susumu, K., Ancona, M.G., Medintz, I.L.: Biophotonic logic devices based on quantum dots and temporally-staggered förster energy transfer relays. Nanoscale 5(24), 12156 (2013)

    ADS  Article  Google Scholar 

  12. 12.

    Hendrickson, S.M., Weiler, C.N., Camacho, R.M., Rakich, P.T., Young, A.I., Shaw, M.J., Pittman, T.B., Franson, J.D., Jacobs, B.C.: All-optical-switching demonstration using two-photon absorption and the zeno effect. Phys. Rev. A 87(2), 023808 (2013)

    ADS  Article  Google Scholar 

  13. 13.

    Sridharan, D., Waks, E.: All-optical switch using quantum-dot saturable absorbers in a dbr microcavity. IEEE J. Quant. Electron. 47(1), 31–39 (2010)

    ADS  Article  Google Scholar 

  14. 14.

    Fischbein, M.D., Drndic, M.: Cdse nanocrystal quantum-dot memory. Appl. Phys. Lett. 86(19), 193106 (2005)

    ADS  Article  Google Scholar 

  15. 15.

    Recher, P., Sukhorukov, E.V., Loss, D.: Quantum dot as spin filter and spin memory. Phys. Rev. Lett. 85(9), 1962 (2000)

    ADS  Article  Google Scholar 

  16. 16.

    Chou, K., Dennis, A.: Förster resonance energy transfer between quantum dot donors and quantum dot acceptors. Sensors 15(6), 13288–13325 (2015)

    Article  Google Scholar 

  17. 17.

    Kagan, C., Murray, C., Nirmal, M., Bawendi, M.: Electronic energy transfer in cdse quantum dot solids. Phys. Rev. Lett. 76(9), 1517 (1996)

    ADS  Article  Google Scholar 

  18. 18.

    Dong, J., Rafayelyan, M., Krzakala, F., Gigan, S.: Optical reservoir computing using multiple light scattering for chaotic systems prediction. IEEE J. Select. Top. Quant. Electron. 26(1), 1–12 (2019)

    Article  Google Scholar 

  19. 19.

    Piggott, A.Y., Petykiewicz, J., Su, L., Vučković, J.: Fabrication-constrained nanophotonic inverse design. Sci. Rep. 7, 1 (2017). https://doi.org/10.1038/s41598-017-01939-2

    Article  Google Scholar 

  20. 20.

    Lu, Q., Yan, X., Wei, W., Zhang, X., Zhang, M., Zheng, J., Li, B., Lin, Q., Ren, X., et al.: High-speed ultra-compact all-optical not and and logic gates designed by a multi-objective particle swarm optimized method. Opt. Laser Technol. 116, 322–327 (2019)

    ADS  Article  Google Scholar 

  21. 21.

    Tahersima, M.H., Kojima, K., Koike-Akino, T., Jha, D., Wang, B., Lin, C., Parsons, K.: Deep neural network inverse design of integrated photonic power splitters. Sci. Rep. 9(1), 1368 (2019)

    ADS  Article  Google Scholar 

  22. 22.

    Sillen, A., Engelborghs, Y.: The correct use of “average” fluorescence parameters. Photochem. Photobiol. 67(5), 475–486 (1998)

    Google Scholar 

Download references


This work was supported by JST CREST Grant number JPMJCR18K2, Japan.

Author information



Corresponding author

Correspondence to Suguru Shimomura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shimomura, S., Nishimura, T., Miyata, Y. et al. Spectral and temporal optical signal generation using randomly distributed quantum dots. Opt Rev 27, 264–269 (2020). https://doi.org/10.1007/s10043-020-00588-7

Download citation


  • Optical computing system
  • Fluorescence
  • Energy transfer