Single-pixel camera with hole-array disk


A single-pixel camera is composed of optical coding masks, a photo detector, and a computational decoder as the important feature that it requires no image sensor for imaging, and therefore has very simple optical and electrical architectures. The optical coding masks, the implementation of which is a novel point of our research, are composed of holes on a substrate and are arranged on the circumference of a disk to allow mask switching by rotation of the disk. The main features are a simple structure that brings low cost in optics and electronics, no path difference in the mask, and no wavelength dependence except for a dependence on air for wideband spectral imaging. Spectral imaging of a sample composed of color films is demonstrated, and the accuracy of the proposed system is evaluated to make the most of the features.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Takhar, D., Laska, J.N., Wakin, M.B., Duarte, M.F., Baron, D., Sarvotham, S., Kelly, K.F., Baraniuk, R.G.: A new compressive imaging camera architecture using optical-domain compression. Proc. SPIE 6065, 606509 (2006)

    Article  Google Scholar 

  2. 2.

    Chan, W.L., Charan, K., Takhar, D., Kelly, K.F., Baraniuk, R.G., Mittleman, D.M.: A single-pixel terahertz imaging system based on compressed sensing. Appl. Phys. Lett. 93, 121105 (2008)

    ADS  Article  Google Scholar 

  3. 3.

    Willett, R.M., Marcia, R.F., Nichols, J.M.: Compressed sensing for practical optical imaging systems: a tutorial. Opt. Eng. 50, 72601 (2011)

    Article  Google Scholar 

  4. 4.

    Riza, N.A., Reza, S.A., Marraccini, P.J.: Digital micro-mirror device-based broadband optical image sensor for robust imaging applications. Opt. Commun. 284, 103–111 (2011)

    ADS  Article  Google Scholar 

  5. 5.

    Sloane, N.J.A., Harwit, M.: Masks for Hadamard transform optics, and weighing designs. Appl. Opt. 15, 107–114 (1976)

    ADS  Article  Google Scholar 

  6. 6.

    Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Shapiro, J.H.: Computational ghost imaging. Phys. Rev. 78, 061802(R) (2008)

    ADS  Article  Google Scholar 

  8. 8.

    Bromberg, Y., Katz, O., Silberberg, Y.: Ghost imaging with a single detector. Phys. Rev. 79, 053840 (2009)

    ADS  Article  Google Scholar 

  9. 9.

    Katz, O., Bromberg, Y., Padgett, M.J.: Compressive ghost imaging. Appl. Phys. Lett. 95, 131110 (2009)

    ADS  Article  Google Scholar 

  10. 10.

    Wang, L., Zhao, S.: Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform. Photon. Res. 4, 240–244 (2016)

    Article  Google Scholar 

  11. 11.

    Radwell, N., Mitchell, K.J., Gibson, G.M., Edgar, M.P., Bowman, R., Padgett, M.J.: Single-pixel infrared and visible microscope. Optica 1, 285–289 (2014)

    ADS  Article  Google Scholar 

  12. 12.

    Aspden, R.S., Gemmell, N.R., Morris, P.A., Tasca, D.S., Mertens, L., Tanner, M.G., Kirkwood, R.A., Ruggeri, A., Tosi, A., Boyd, R.W., Buller, G.S., Hadfield, R.H., Padgett, M.J.: Photon-sparse microscopy: visible light imaging using infrared illumination. Optica 2, 1024–1052 (2015)

    Article  Google Scholar 

  13. 13.

    Gibson, G.M., Sun, B., Edgar, M.P., Phillips, D.B., Hempler, N., Maker, G.T., Malcolm, G.P.A., Padgett, M.J.: Real-time imaging of methane gas leaks using a single-pixel camera. Opt. Express 25, 2998–3005 (2017)

    ADS  Article  Google Scholar 

  14. 14.

    Shrekenhamer, D., Watts, C.M., Padilla, W.J.: Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator. Opt. Express 21, 12507–12518 (2013)

    ADS  Article  Google Scholar 

  15. 15.

    Watts, C.M., Shrekenhamer, D., Montoya, J., Lipworth, G., Hunt, J., Sleasman, T., Krishna, S., Smith, D.R., Padilla, W.J.: Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 8, 605–609 (2014)

    ADS  Article  Google Scholar 

  16. 16.

    Stantchev, R.I., Sun, B., Hornett, S.M., Hobson, P.A., Gibson, G.M., Padgftt, M.J., Hendry, E.: Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci. Adv. 2, e1600190 (2016)

    ADS  Article  Google Scholar 

  17. 17.

    Magalhaes, F., Araujo, F.M., Correia, M.V., Abolbashari, M., Farahi, F.: High-resolution hyperspectral single-pixel imaging system based on compressive sensing. Opt. Eng. 51, 071406 (2012)

    ADS  Article  Google Scholar 

  18. 18.

    Guo, Q., Chen, H., Weng, Z., Chen, M., Yang, S., Xie, S.: Fast time-lens-based line-scan single-pixel camera with multi-wavelength source. Biomed. Opt. Express 6, 3610–3617 (2015)

    Article  Google Scholar 

  19. 19.

    Jin, S., Hui, W., Liu, B., Ying, C., Liu, D., Ye, Q., Zhou, W., Tian, J.: Extended-field coverage hyperspectral camera based on a single-pixel technique. Appl. Opt. 55, 4808–4813 (2016)

    ADS  Article  Google Scholar 

  20. 20.

    Gattinger, P., Kilgus, J., Zorin, I., Langer, G., Nikzad-Langerodi, R., Rankl, C., Gröschl, M., Brandstetter, M.: Broadband near-infrared hyperspectral single pixel imaging for chemical characterization. Opt. Exp. 27, 12666–12672 (2019)

    ADS  Article  Google Scholar 

  21. 21.

    Pham, Q.D., Hayasaki, Y.: Optical frequency comb interference profilometry using compressive sensing. Opt. Exp. 21, 19003–19011 (2013)

    ADS  Article  Google Scholar 

  22. 22.

    Pham, Q.D., Hayasaki, Y.: Optical frequency comb profilometry using a single-pixel camera composed of digital micromirror devices. Appl. Opt. 54, A39–A44 (2015)

    ADS  Article  Google Scholar 

  23. 23.

    Sun, M., Edgar, M.P., Gibson, G.M., Sun, B., Radwell, N., Lamb, R., Padgett, M.J.: Single-pixel three-dimensional imaging with time-based depth resolution. Nat. Commun. 7, 12010 (2016)

    ADS  Article  Google Scholar 

  24. 24.

    Pham, Q.D., Hayasaki, Y.: Combining phase images measured in the radio frequency and the optical frequency ranges. Opt. Lett. 42, 2062–2065 (2017)

    ADS  Article  Google Scholar 

  25. 25.

    Lochocki, B., Gambin, A., Mazanera, S., Irles, E., Tajahuerce, E., Lancis, J., Artal, P.: Single pixel camera ophthalmoscope. Optica 3, 1056–1059 (2016)

    ADS  Article  Google Scholar 

  26. 26.

    Clemente, P., Duran, V., Tajahuerce, E., Andres, P., Climent, V., Lancis, J.: Compressive holography with a single-pixel detector. Opt. Lett. 38, 2524–2526 (2013)

    ADS  Article  Google Scholar 

  27. 27.

    Ota, K., Hayasaki, Y.: Complex-amplitude single-pixel imaging. Opt. Lett. 43, 3682–3685 (2018)

    ADS  Article  Google Scholar 

  28. 28.

    Soldevila, F., Durán, V., Clemente, P., Lancis, J., Tajahuerce, E.: Phase imaging by spatial wavefront sampling. Optica 5, 164–174 (2018)

    ADS  Article  Google Scholar 

  29. 29.

    Huynh, N., Zhang, E., Betcke, M., Arridge, S., Beard, P., Cox, B.: Single-pixel optical camera for video rate ultrasonic imaging. Optica 3, 26–29 (2016)

    ADS  Article  Google Scholar 

  30. 30.

    Howland, G.A., Lum, D.J., Ware, M.R., Howell, J.C.: Photon counting compressive depth mapping. Opt. Express 21, 23822–23837 (2013)

    ADS  Article  Google Scholar 

  31. 31.

    Lawrie, B.J., Pooser, R.C.: Toward real-time quantum imaging with a single pixel camera. Opt. Express 21, 7549–7559 (2013)

    ADS  Article  Google Scholar 

  32. 32.

    Howland, G.A., Lum, D.J., Howell, J.C.: Compressive wavefront sensing with weak values. Opt. Express 22, 18870–18880 (2014)

    ADS  Article  Google Scholar 

  33. 33.

    Futia, G., Schlup, P., Winters, D.G., Bartels, R.A.: Spatially-chirped modulation imaging of absorption and fluorescent objects on single-element optical detector. Opt. Express 19, 1626–1640 (2011)

    ADS  Article  Google Scholar 

  34. 34.

    Fan, K., Suen, J.Y., Padilla, W.J.: Graphene metamaterial spatial light modulator for infrared single pixel imaging. Opt. Express 25, 25318–25325 (2017)

    ADS  Article  Google Scholar 

Download references


This research was supported by JSPS KAKENHI Grant Number JP17H06102.

Author information



Corresponding author

Correspondence to Yoshio Hayasaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayasaki, Y., Sato, R. Single-pixel camera with hole-array disk. Opt Rev 27, 252–257 (2020).

Download citation


  • Spatial light modulator
  • Single-pixel imaging
  • Computational imaging
  • Hadamard coding