Skip to main content
Log in

Dual-wavelengths filter operating at visible wavelength region using subwavelength grating on waveguide structure

  • Special section: Regular Paper
  • The 11th International Conference on Optics-Photonics Design & Fabrication (ODF’18), Hiroshima, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A dual-wavelength filter was experimentally demonstrated using subwavelength grating (SWG)/waveguide structure. We designed the structural parameters of the SWG and the waveguide to find the reflection peaks in the visible wavelength region. To investigate the optical response of the designed SWG/waveguide structure, finite-difference time-domain (FDTD) numerical calculations were performed for electromagnetic field distribution. The dual reflection peaks from our proposed structure were predicted in visible wavelength regions by the FDTD calculation. The calculated electromagnetic field distribution also revealed that the reflection peaks were associated with resonances in the SWG and waveguides. We fabricated the SWG/waveguide with typical electron-beam lithography techniques, and two reflection peaks were observed at wavelengths of 486 nm and 590 nm with bandwidths of 45 nm and 58 nm, respectively. These experimental results indicate that dual-wavelength filters can be successfully realized without complex fabrication processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mahani, F.F., Mokhtari, A., Mehran, M.: Dual mode operation, highly selective nanohole array-based plasmonic colour filters. Nanotechnology 28, 385203 (2017)

    Article  Google Scholar 

  2. Xiao, L., Wei, L., Cheng, X., He, Y., Yeung, E.S.: Noise-free dual-wavelength difference imaging of plasmonic resonant nanoparticles in living cells. Anal. Chem. 83, 7340–7347 (2011)

    Article  Google Scholar 

  3. Liu, D., Ngo, N.Q., Tjin, S.C., Dong, X.: A dual-wavelength fiber laser sensor system for measurement of temperature and strain. IEEE Photon. Technol. Lett. 19, 1148–1150 (2007)

    Article  ADS  Google Scholar 

  4. Wang, S., Liu, S., Ni, W., Wu, S., Lu, P.: Dual-wavelength highly-sensitive refractive index sensor. Opt. Express 25, 14389–14396 (2017)

    Article  ADS  Google Scholar 

  5. Li, Z., Clark, A.W., Cooper, J.M.: Dual color plasmonic pixels create a polarization controlled nano color palette. ACS Nano 10, 492–498 (2016)

    Article  Google Scholar 

  6. Kim, M., Kim, I., Jang, J., Lee, D., Nam, K.T., Rho, J.: Active color control in a metasurface by polarization rotation. Appl. Sci. 8, 982 (2018)

    Article  Google Scholar 

  7. Liang, Y., Peng, W., Hu, R., Lu, M.: Symmetry-reduced double layer metallic grating structure for dual-wavelength spectral filtering. Opt. Express 22, 11633–11645 (2014)

    Article  ADS  Google Scholar 

  8. Liang, Y., Peng, W., Lu, M., Chu, S.: Narrow-band wavelength tunable filter based on asymmetric double layer metallic grating. Opt. Express 23, 14434–14445 (2015)

    Article  ADS  Google Scholar 

  9. van Manen, H.-J., Verkuijlen, P., Wittendorp, P., Subramaniam, V., van den Berg, T.K., Roos, D., Otto, C.: Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy. Biophys. J. 94, L67–L69 (2008)

    Article  Google Scholar 

  10. Adams, K.E., Ke, S., Kwon, S., Liang, F., Fan, Z., Lu, Y., Hirschi, K., Mawad, M.E., Barry, M.A., Sevick-Muraca, E.M.: Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. J. Biomed. Opt. 12, 024017 (2007)

    Article  ADS  Google Scholar 

  11. Kikuta, H., Toyota, H., Yu, W.: Optical elements with subwavelength structured surfaces. Opt. Rev. 10, 63–73 (2003)

    Article  Google Scholar 

  12. Lalanne, P., Hugonin, J.P., Chavel, P.: Optical properties of deep lamellar gratings: a coupled Bloch-mode insight. J. Lightw. Technol. 24, 2442–2449 (2006)

    Article  ADS  Google Scholar 

  13. Chang-Hasnain, C.J.: High-contrast gratings as a new platform for integrated optoelectronics. Semicond. Sci. Technol. 26, 014043 (2011)

    Article  ADS  Google Scholar 

  14. Chang-Hasnain, C.J., Yang, W.: High-contrast gratings for integrated optoelectronics. Adv. Opt. Photon. 4, 379–440 (2012)

    Article  Google Scholar 

  15. Karagodsky, V., Sedgwick, F.G., Chang-Hasnain, C.J.: Theoretical analysis of subwavelength high contrast grating reflectors. Opt. Express 18, 16973–16988 (2010)

    Article  ADS  Google Scholar 

  16. Zhuang, L., Schablitsky, S., Shi, R.C., Chou, S.Y.: Fabrication and performance of thin amorphous Si subwavelength transmission grating for controlling vertical cavity surface emitting laser polarization. J. Vac. Sci. Technol. B 14, 4055–4057 (1996)

    Article  Google Scholar 

  17. Zhou, Y., Moewe, M., Kern, J., Huang, M.C.Y., Chang-Hasnain, C.J.: Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating. Opt. Express 16, 17282–17287 (2008)

    Article  ADS  Google Scholar 

  18. Gębski, M., Dems, M., Szerling, A., Motyka, M., Marona, L., Kruszka, R., Urbańczyk, D., Walczakowski, M., Palka, N., Wójcik-Jedlińska, A., Wang, Q.J., Zhang, D.H., Bugajski, M., Wasiak, M., Czyszanowski, T.: Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror. Opt. Express 23, 11674–11686 (2015)

    Article  ADS  Google Scholar 

  19. Hogan, B., Hegarty, S.P., Lewis, L., Romero-Vivas, J., Ochalsky, T.J., Huyet, G.: Realization of high-contrast gratings operating at 10 μm. Opt. Lett. 41, 5130–5133 (2016)

    Article  ADS  Google Scholar 

  20. Takashima, Y., Haraguchi, M., Naoi, Y.: Highly sensitive magnetic field sensor with normal-incidence geometry using Ni-based bilayer subwavelength periodic structure operating in visible-wavelength region. Jpn. J. Appl. Phys. 57, 08PE01 (2018)

    Article  Google Scholar 

  21. Park, C.H., Yoon, Y.T., Lee, S.S.: Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure. Opt. Express 20, 23769–23777 (2012)

    Article  ADS  Google Scholar 

  22. Liu, Z.S., Tibuleac, S., Shin, D., Young, P.P., Magnusson, R.: High-efficiency guided-mode resonance filter. Opt. Lett. 23, 1556–1558 (1998)

    Article  ADS  Google Scholar 

  23. Wang, Z., Sang, T., Wang, L., Zhu, J., Wu, Y., Chen, L.: Guided-mode resonance Brewster filters with multiple channels. Appl. Phys. Lett. 88, 251115 (2006)

    Article  ADS  Google Scholar 

  24. Yoon, Y.T., Park, C.H., Lee, S.S.: Highly efficient color filter incorporating a thin metal-dielectric resonant structure. Appl. Phys. Express 5, 022501 (2012)

    Article  ADS  Google Scholar 

  25. Lee, K.J., Giese, J., Ajayi, L., Magnusson, R., Johnson, E.: Resonant grating polarizers made with silicon nitride, titanium dioxide, and silicon: Design, fabrication, and characterization. Opt. Express 22, 9271–9281 (2014)

    Article  ADS  Google Scholar 

  26. He, S., Shi, Z., Li, X., Gao, X., Wang, Z., Liu, Q., Zhu, G., Zhang, M., Zhu, H., Wang, Y.: Membrane guided-mode resonant color filters exhibiting adjustable spectral response. Opt. Commun. 342, 129–135 (2015)

    Article  ADS  Google Scholar 

  27. Sahoo, P.K., Sarker, S., Joseph, J.: High sensitivity guided-mode-resonance optical sensor employing phase detection. Sci. Rep. 7, 7607 (2017)

    Article  ADS  Google Scholar 

  28. Luke, K., Okawachi, Y., Lamont, M.R.E., Gaeta, A.L., Lipson, M.: Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 40, 4823–4826 (2015)

    Article  ADS  Google Scholar 

  29. Rodríguez-de Marcos, L.V., Larruquert, J.I., Méndez, J.A., Aznárez, J.A.: Self-consistent optical constants of SiO2 and Ta2O5 films. Opt. Mater. Express 6, 3622–3637 (2016)

    Article  ADS  Google Scholar 

  30. Sridharan, G., Bhattacharya, S.: Simplified analysis of sub-wavelength triangular gratings by simplified modal method. Appl. Opt. 55, 9712–9718 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by JSPS KAKENHI Grant Number JP18K04238 and the LED general platform project of Tokushima University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuusuke Takashima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takashima, Y., Haraguchi, M. & Naoi, Y. Dual-wavelengths filter operating at visible wavelength region using subwavelength grating on waveguide structure. Opt Rev 26, 466–471 (2019). https://doi.org/10.1007/s10043-019-00541-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-019-00541-3

Keywords

Navigation