Skip to main content

Advertisement

Log in

Analysis on improvement in resolution by excitation beam modulation in stimulated emission depletion nanoscopy

  • Special Section: Regular Paper
  • The 11th International Conference on Optics-Photonics Design & Fabrication (ODF’18), Hiroshima, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

CW STED nanoscopy using illumination of continuous wave is considerably easy and less expensive to construct compared with the pulsed STED nanoscopy. In this study, to improve the resolution of CW STED nanoscopy, we analyzed the imaging characteristics of CW STED nanoscopy by amplitude modulation of incident light flux of the excitation beam illumination considering the polarization state and geometry of the pupil mask for amplitude modulation. We analyzed the imaging characteristics of STED nanoscopy by applying the characteristic, which shows an extremely confined electric field in transverse direction when the light waves with high spatial frequencies and with the same polarization direction are diffracted and interfered in the focal region. By applying linearly polarized illumination and the mixed-shaped aperture composed of the bow tie-shaped blocking area and the circular blocking aperture area, we analyzed that imaging resolution can be enhanced above 20% higher than the resolution of the conventional CW STED nanoscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huang, B., Bates, M., Zhuang, X.: Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009). https://doi.org/10.1146/annurev.biochem.77.061906.092014

    Article  Google Scholar 

  2. Schermelleh, L., Heintzmann, R., Leonhardt, H.: A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165 LP-175 (2010). doi:10.1083/jcb.201002018

    Article  Google Scholar 

  3. Leung, B.O., Chou, K.C.: Review of super-resolution fluorescence microscopy for biology. Appl. Spectrosc. 65, 967–980 (2011). https://doi.org/10.1366/11-06398

    Article  ADS  Google Scholar 

  4. Hell, S.W., Wichmann, J.: Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780 (1994). https://doi.org/10.1364/OL.19.000780

    Article  ADS  Google Scholar 

  5. Hell, S.W.: Far-Field Optical Nanoscopy. Science 316(80), 1153–1158 (2007). https://doi.org/10.1126/science.1137395

    Article  ADS  Google Scholar 

  6. Willig, K.I., Harke, B., Medda, R., Hell, S.W.: STED microscopy with continuous wave beams. Nat. Methods. 4, 915–918 (2007). https://doi.org/10.1038/nmeth1108

    Article  Google Scholar 

  7. Moneron, G., Medda, R., Hein, B., Giske, A., Westphal, V., Hell, S.W.: Fast STED microscopy with continuous wave fiber lasers. Opt. Express. 18, 1302–1309 (2010). https://doi.org/10.1364/OE.18.001302

    Article  ADS  Google Scholar 

  8. Harke, B., Keller, J., Ullal, C.K., Westphal, V., Schönle, A., Hell, S.W.: Resolution scaling in STED microscopy. Opt. Express. 16, 4154 (2008). https://doi.org/10.1364/OE.16.004154

    Article  ADS  Google Scholar 

  9. Vicidomini, G., Moneron, G., Han, K.Y., Westphal, V., Ta, H., Reuss, M., Engelhardt, J., Eggeling, C., Hell, S.W.: Sharper low-power STED nanoscopy by time gating. Nat. Methods. 8, 571–575 (2011). https://doi.org/10.1038/nmeth.1624

    Article  Google Scholar 

  10. Neupane, B., Jin, T., Mellor, L., Loboa, E., Ligler, F., Wang, G.: Continuous-wave stimulated emission depletion microscope for imaging actin cytoskeleton in fixed and live cells. Sensors. 15, 24178–24190 (2015). https://doi.org/10.3390/s150924178

    Article  Google Scholar 

  11. Klar, T.A., Wollhofen, R., Jacak, J.: Sub-Abbe resolution: from STED microscopy to STED lithography. Phys. Scr. 2014, 14049 (2014)

    Article  Google Scholar 

  12. Hao, X., Kuang, C., Wang, T., Liu, X.: Effects of polarization on the de-excitation dark focal spot in STED microscopy. J. Opt. (2010). https://doi.org/10.1088/2040-8978/12/11/115707

    Article  ADS  Google Scholar 

  13. Xue, Y., Kuang, C., Li, S., Gu, Z., Liu, X.: Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy. Opt. Express. 20, 17653 (2012). https://doi.org/10.1364/OE.20.017653

    Article  ADS  Google Scholar 

  14. Li, X., Venugopalan, P., Ren, H., Hong, M., Gu, M.: Super-resolved pure-transverse focal fields with an enhanced energy density through focus of an azimuthally polarized first-order vortex beam. Opt. Lett. 39, 5961–5964 (2014). https://doi.org/10.1364/OL.39.005961

    Article  ADS  Google Scholar 

  15. Moffitt, J.R., Osseforth, C., Michaelis, J.: Time-gating improves the spatial resolution of STED microscopy. Opt. Express. 19, 4242 (2011). https://doi.org/10.1364/OE.19.004242

    Article  ADS  Google Scholar 

  16. Chung, E., Kim, D., So, P.T.: Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy. Opt. Lett. 31, 945 (2006). https://doi.org/10.1364/OL.31.000945

    Article  ADS  Google Scholar 

  17. Chung, E., Kim, D., Cui, Y., Kim, Y.-H., So, P.T.C.: Two-dimensional standing wave total internal reflection fluorescence microscopy: super resolution imaging of single molecular and biological specimens. Biophys. J. 93, 1747–1757 (2007). https://doi.org/10.1529/biophysj.106.097907

    Article  ADS  Google Scholar 

  18. Boruah, B.R.: Lateral resolution enhancement in confocal microscopy by vectorial aperture engineering. Appl. Opt. 49, 701–707 (2010). https://doi.org/10.1364/AO.49.000701

    Article  ADS  Google Scholar 

  19. Gliko, O., Brownell, W.E., Saggau, P.: Fast two-dimensional standing-wave total-internal-reflection fluorescence microscopy using acousto-optic deflectors. Opt. Lett. 34, 836–838 (2009). https://doi.org/10.1364/OL.34.000836

    Article  ADS  Google Scholar 

  20. Gao, P., Ulrich Nienhaus, G.: Confocal laser scanning microscopy with spatiotemporal structured illumination. Opt. Lett. 41, 1193 (2016). https://doi.org/10.1364/OL.41.001193

    Article  ADS  Google Scholar 

  21. Wolf, E.: Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field. Proc. R. Soc. A Math. Phys. Eng. Sci. 253, 349–357 (1959). https://doi.org/10.1098/rspa.1959.0199

  22. Richards, B., Wolf, E.: Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System. Proc. R. Soc. A Math. Phys. Eng. Sci. 253, 358–379 (1959). https://doi.org/10.1098/rspa.1959.0200

  23. Lee, W.-S., Lim, G., Kim, W.-C., Choi, G.-J., Yi, H.-W., Park, N.-C.: Investigation on improvement of lateral resolution of continuous wave STED microscopy by standing wave illumination. Opt. Express. 26, 9901–9919 (2018). https://doi.org/10.1364/OE.26.009901

    Article  ADS  Google Scholar 

  24. ZIJP, F.: Near-Field Optical Data Storage (2007)

  25. Leutenegger, M., Eggeling, C., Hell, S.W.: Analytical description of STED microscopy performance. Opt. Express. 18, 26417–26429 (2010). https://doi.org/10.1364/OE.18.026417

    Article  ADS  Google Scholar 

  26. Lu, J., Min, W., Conchello, J.-A., Xie, X.S., Lichtman, J.W., Conchello, J.-A., Xie, X.S., Lichtman, J.W.: Super-resolution laser scanning microscopy through spatiotemporal modulation—nano letters (ACS publications). Nano Lett. 9, 3883–3889 (2009). https://doi.org/10.1021/nl902087d

    Article  ADS  Google Scholar 

  27. Zhu, B., Shen, S., Zheng, Y., Gong, W., Si, K.: Numerical studies of focal modulation microscopy in high-NA system. Opt. Express. 24, 19138 (2016). https://doi.org/10.1364/OE.24.019138

    Article  ADS  Google Scholar 

  28. Ni, H., Zou, L., Guo, Q., Ding, X.: Lateral resolution enhancement of confocal microscopy based on structured detection method with spatial light modulator. Opt. Express. 25, 2872 (2017). https://doi.org/10.1364/OE.25.002872

    Article  ADS  Google Scholar 

  29. Chmyrov, A., Keller, J., Grotjohann, T., Ratz, M., D’Este, E., Jakobs, S., Eggeling, C., Hell, S.W.: Nanoscopy with more than 100,000 “doughnuts”. Nat. Methods 10, 737–740 (2013)

    Article  Google Scholar 

  30. Yang, B., Fang, C.-Y., Chang, H.-C., Treussart, F., Trebbia, J.-B., Lounis, B.: Polarization effects in lattice–STED microscopy. Faraday Discuss. 184, 37–49 (2015)

    Article  ADS  Google Scholar 

  31. Fischer, J., Wegener, M.: Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy. Opt. Mat. Express 1(4), 614–624 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (2015R1A5A1037668, NRF-2019R1C1C1010911).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to No-Cheol Park or Wan-Chin Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, G., Park, NC. & Kim, WC. Analysis on improvement in resolution by excitation beam modulation in stimulated emission depletion nanoscopy. Opt Rev 26, 512–521 (2019). https://doi.org/10.1007/s10043-019-00531-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-019-00531-5

Keywords

Navigation