Generation of a subdiffraction-limit light sheet with micrometer-order thickness using a computer-generated hologram


We present the generation of a subdiffraction-limit light sheet using a computer-generated hologram (CGH) with a lens system, comprising a cylindrical lens and objective lens. The algorithm for designing a CGH generating an array of subdiffraction-limit spots (Ogura et al. in Opt Express 22:25196–25207, 2014) is modified to design a CGH generating a subdiffraction-limit light sheet. The modulation of CGHs is limited to one dimension to avoid the unnecessary fluctuation of intensity along the height direction of the light sheet. In design, we can obtain an isolated light sheet with 80% thickness of the diffraction-limit light sheet. In addition, a subdiffraction-limit triplet light sheet can be generated owing to design flexibility. Analysis of the three-dimensional structure of light sheets suggests that our method can be used to reduce the thickness of a light sheet, while suppressing a reduction in depth. Experimental results demonstrate that the designed CGH generates a subdiffraction-limit light sheet with a micrometer-order thickness.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Park, J.P.: Recent progress in computer-generated holography for three-dimensional scenes. J. Inf. Displ. 18, 1–12 (2017)

    Article  Google Scholar 

  2. 2.

    Shimobaba, T., Ito, t: Random phase-free computer-generated hologram. Opt. Express 23, 9549–9554 (2015)

    ADS  Article  Google Scholar 

  3. 3.

    Hussein, A.T., Alresheedi, M.T., Elmirghani, J.M.H.: 20 Gb/s mobile indoor visible light communication system employing beam steering and computer generated holograms. J. Light. Technol. 33, 5242–5260 (2015)

    ADS  Article  Google Scholar 

  4. 4.

    Agarwal, R., Ladavac, K., Roichman, Y., Yu, G., Lieber, C.M., Grier, D.G.: Manipulation and assembly of nanowires with holographic optical traps. Opt. Express 13, 8906–8912 (2005)

    ADS  Article  Google Scholar 

  5. 5.

    Ogura, Y., Kazayama, Y., Nishimura, T., Tanida, J.: Large-area manipulation of microdroplets by holographic optical tweezers based on a hybrid diffractive system. Appl. Opt. 50, H36–H41 (2011)

    Article  Google Scholar 

  6. 6.

    Jesacher, A., Bernet, S., Ritsch-Marte, M.: Combined holographic optical trapping and optical image processing using a single diffractive pattern displayed on a spatial light modulator. Opt. Lett. 39, 5337–5340 (2014)

    ADS  Article  Google Scholar 

  7. 7.

    Hayasaki, Y., Sugimoto, T., Takita, A., Nishida, N.: Variable holographic femtosecond laser processing by use of a spatial light modulator. Appl. Phys. Lett. 87, 031101 (2005)

    ADS  Article  Google Scholar 

  8. 8.

    Nikolenko, V., Watson, B.O., Araya, R., Woodruff, A., Peterka, D.S., Yuste, R.: SLM microscopy: scanless two-photon imaging and photo stimulation with spatial light modulators. Front. Neural Circuits 2, 5 (2008)

    Article  Google Scholar 

  9. 9.

    Shechtman, Y., Weiss, L.E., Backer, A.S., Lee, M.Y., Moerner, W.E.: Multicolour localization microscopy by point-spread-function engineering. Nat. Photonics 10, 590–594 (2016)

    ADS  Article  Google Scholar 

  10. 10.

    Yuan, G.H., Rogers, E.T.F., Zheludev, N.I.: Achromatic super-oscillatory lenses with sub-wavelength focusing. Light Sci. Appl. 6, e17036 (2017)

    ADS  Article  Google Scholar 

  11. 11.

    Rogers, E.T.F., Lindberg, J., Roy, T., Savo, S., Chad, J.E., Dennis, M.R., Zheludev, N.I.: A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 11, 432–435 (2012)

    ADS  Article  Google Scholar 

  12. 12.

    Ogura, Y., Aino, M., Tanida, J.: Design and demonstration of fan-out elements generating an array of subdiffraction spots. Opt. Express 22, 25196–25207 (2014)

    ADS  Article  Google Scholar 

  13. 13.

    Ogura, Y., Aino, M., Tanida, J.: Diffractive fan-out elements for wavelength-multiplexing subdiffraction-limit spot generation in three dimensions. Appl. Opt. 55, 6371–6380 (2016)

    ADS  Article  Google Scholar 

  14. 14.

    Gerchberg, R.W., Saxton, W.O.: A practical algorithm for the determination of the phase from image and diffraction plane pictures. OPTIK 35, 237–246 (1972)

    Google Scholar 

  15. 15.

    Ogura, Y., Aino, M., Tanida, J.: Microscale optical cryptography using a subdiffraction-limit optical key. Jpn. J. Appl. Phys. 57, 040309 (2018)

    ADS  Article  Google Scholar 

  16. 16.

    Rai, M.R., Vijayakumar, A., Ogura, Y., Rosen, J.: Resolution enhancement in nonlinear interferenceless COACH with point response of subdiffraction limit patterns. Opt. Express 27, 391–403 (2019)

    ADS  Article  Google Scholar 

  17. 17.

    Power, R.M., Huisken, J.: A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods 14, 360–373 (2017)

    Article  Google Scholar 

  18. 18.

    Santi, P.A.: Light sheet fluorescence microscopy: a review. J. Histochem. Cytochem. 59, 129–138 (2011)

    Article  Google Scholar 

  19. 19.

    Chen, B.-C., Legant, W.R., Wang, K., Shao, L., Milkie, D.E., Davidson, M.W., Janetopoulos, C., Wu, X.S., Hammer III, J.A., Liu, Z., English, B.P., Mimori-Kiyosue, Y., Romero, D.P., Ritter, A.T., Lippincott-Schwartz, J., Fritz-Laylin, L., Mullins, R.D., Mitchell, D.M., Bembenek, J.N., Reymann, A.-C., Böhme, R., Grill, S.W., Wang, J.T., Seydoux, G., Tulu, U.S., Kiehart, D.P., Betzig, E.: Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014)

    Article  Google Scholar 

  20. 20.

    Inoue, S., Oldenbourg, R.: Microscopes. In: Bass, M., Stryland, E.W.V., Williams, D.R., Wolfe, W.L. (eds.) Handbook of Optics, vol. 2, 2nd edn, pp. 17.1–17.52. McGraw-Hill, New York (1995)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yusuke Ogura.

Additional information

This work was supported by the Research Foundation for Opto-Science and Technology.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ogura, Y., Kanai, R. & Tanida, J. Generation of a subdiffraction-limit light sheet with micrometer-order thickness using a computer-generated hologram. Opt Rev 26, 452–459 (2019).

Download citation


  • Light sheet
  • Computer-generated hologram
  • Subdiffraction limit
  • Spatial light modulator
  • Cylindrical lens