Highly reliable operation under high case temperature in 638-nm BA-LD

  • Kyosuke KuramotoEmail author
  • Shinji Abe
  • Motoharu Miyashita
  • Masatsugu Kusunoki
  • Takehiro Nishida
  • Tetsuya Yagi
Special Section: Regular Paper Laser Display and Lighting Conference (LDC’ 18), Yokohama, Japan
Part of the following topical collections:
  1. Laser Display and Lighting Conference (LDC' 18), Yokohama, Japan


We developed two types of 638-nm high-power broad area-laser diodes (BA-LDs). One was dual-emitter LD mainly for CW operation and the others triple one for pulse. Total emitter width of dual-emitter LD was 150 µm and that of triple one 180 µm. Each LD was studied in terms of optical power-current and wall plug efficiency (WPE)-current dependence on case temperature and reliability under the pulse condition with frequency of 120 Hz, and duty of 40%. The dual-emitter LD emitted 2.5 W at case temperature of 55 °C, whereas triple one did 2.1 W at the same condition. This was mainly originated from low heat generation of dual-emitter LD because of the narrow emitter width. On the contrary, the narrow emitter width increased the optical power density and shortened the lifetime. We discussed how to estimate the lifetime of light sources using red LDs which have multiple degradation modes under pulse operation. And then, we proposed a dulled drive current waveform for dual-emitter LD to improve a lifetime, resulting in MTTF exceeding 20,000 h at the output over 2 W under the pulse condition.


Laser diode Red Broad area Dual emitter Triple emitter 


  1. 1.
    Kuroda, K., Yamamoto, K., Kurimura, N.: Rezadeisupurei (laser display) Optronics-sya, Tokyo, pp 1 (2010) [in Japanese]Google Scholar
  2. 2.
    Yamamoto, K.: Optronics 376, 134 (2013) [in Japanese]Google Scholar
  3. 3.
    Yagi, T.: Rezakenkyu 41(4), 225 (2013) [in Japanese]Google Scholar
  4. 4.
    Buckley, E.: SID Digest 1074 (2008)Google Scholar
  5. 5.
    Yagi, T., Shimada, N., Nishida, T., Mitsuyama, H., Miyashita, M.: Proc. IDW’12, 2021 (2012)Google Scholar
  6. 6.
    Kuramoto, K., Abe, S., Miyashita, M., Nishida, T., Yagi, T.: Proc. SPIE, 10514 (2018)Google Scholar
  7. 7.
    Nishida, T., Kuramoto, K., Abe, S., Kusunoki, M., Miyashita, M., Yagi, T.: Opt. Rev. 25(1), 165 (2018)CrossRefGoogle Scholar
  8. 8.
    Mitsuyama, H., Motoda, T., Nishida, T., Kadoiwa, K., Yagi, T.: Opt. Rev. 21(1), 43 (2014)CrossRefGoogle Scholar
  9. 9.
    Kuramoto, K., Nishida, T., Abe, S., Miyashita, M., Mori, K., Yagi, T.: Proc. SPIE 9348, 934817 (2015)Google Scholar
  10. 10.
    Kuramoto, K., Abe, S., Miyashita, M., Nishida, T., Yagi, T.: Proc. IDW’17, 1165 (2017)Google Scholar
  11. 11.
    Moser, A., Latta, E.E., Webb., D.J.: Appl. Phys. Lett. 55, 1152 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    Tada, H., Shima, A., Utakoji, T., Motoda, T., Tsugami, M., Nagahama, K., Aiga, M.: Jpn. J. Appl. Phys. 365A, 2666 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Shimada, N., Yukawa, M., Shibata, K., Ono, K., Yagi, T., Shima, A.: Proc. SPIE 7198, 719806 (2009)CrossRefGoogle Scholar
  14. 14.
    Hülsewede, R., Schulze, H., Sebastian, J., Schröder, D., Meusel, J., Hennig, P.: Proc. SPIE 6876, 68760F (2008)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  1. 1.Mitsubishi Electric CorporationItamiJapan

Personalised recommendations