Abstract
In this paper, an all-optical RS flip-flop was proposed using nonlinear Kerr effect in photonic crystals. The proposed structure is composed of a core section and two optical switches. The core section consists of two cross-connected resonant cavities whose resonant mode are at wavelengths 1586 and 1620 nm. The cavities were designed such that the resonance of one cavity prevents the signal coupling through the other one. For designing the switch sections, a bias port was used to keep data when there is no input for the flip-flop. Therefore, when both input ports are inactive, the previous state of the flip-flop will be kept. Total footprint and maximum frequency of the proposed structure are obtained 361 μm2 and 320 GHz, respectively.
Similar content being viewed by others
References
Lau, K.Y.: Ultra-high frequency linear fiber optic systems. Springer, Berlin (2011)
Liu, L., Kumar, R., Huybrechts, K., Spuesens, T., Roelkens, G., Geluk, E.J.: An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nat. Photon. 4, 182–187 (2010)
Cai, T., Bose, R., Solomon, G.S., Waks, E.: Controlled coupling of photonic crystal cavities using photochromic tuning. Appl. Phys. Lett. 102, 141118 (2013)
Pu, J., Yomogida, Y., Liu, K.K., Li, L.J., Iwasa, Y., Takenobu, T.: Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano lett. 12, 4013–4017 (2012)
Peres, N.M., Bludov, Y.V.: Enhancing the absorption of graphene in the terahertz range. Europhys. Lett. 101, 58002 (2013)
Ferreira, A., Peres, N., Ribeiro, R., Stauber, T.: Graphene-based photodetector with two cavities. Phys. Rev. B 85, 115438 (2012)
Noori, M., Soroosh, M.: A comprehensive comparison of photonic band gap and self-collimation based 2D square array waveguides. Optik-Internat. J. Light Electron. Opt. 126, 4775–4781 (2015)
Noori, M., Soroosh, M., Baghban, H.: An approach to achieve all-angle, polarization-insensitive and broad-band self-collimation in 2D square-lattice photonic crystals. Ukr. J. Phys. Opt. 12, 85–94 (2015)
Noori, M., Soroosh, M., Baghban, H.: Highly efficient self-collimation based waveguide for Mid-IR applications. Photon. Nanostruc. Fundament. Appl. 19, 1–11 (2016)
Noori, M., Soroosh, M., Baghban, H.: Design of highly efficient polarization beam splitter based on self-collimation on Si platform. J. Mod. Opt. 64, 491–499 (2017)
Noori, M., Soroosh, M., Baghban, H.: All-angle self-collimation in two-dimensional square array photonic crystals based on index contrast tailoring. Opt. Eng. 54, 037111 (2015)
Brandão, E.R., Vasconcelos, M.S., Anselmo, D.H.: Octonacci photonic crystals with negative refraction index materials. Opt. Mat. 62, 584–592 (2016)
Kumar, P., Kumar, V., Roy, J.S.: Dodecagonal photonic crystal fibers with negative dispersion and low confinement loss. Optik-Internat. J. Light Electron. Opt. 144, 363–369 (2017)
Jahromi, M.A.F., Bananej, A.: Tunable slow light in 1-D photonic crystal. Optik-Internat. J. Light Electron. Opt. 127, 3889–3891 (2016)
Janrao, N., Janyani, V.: Slow light photonic crystal waveguide with large quality factor. Optik-Internat. J. Light Electron. Opt. 127, 1260–1264 (2016)
Musavizadeh, S.M., Soroosh, M., Mehdizadeh, F.: Optical filter based on photonic crystal. Ind. J. Pure Appl. Phys. 53, 736–739 (2015)
Vaisi, A., Soroosh, M., Mahmoudi, A.: Low loss and high-quality factor optical filter using photonic crystal-based resonant cavity. J. Opt. Commun. (2017) (published online)
Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: Special optical communication filter based on Thue-Morse photonic crystal structure. Opt. Appl. 46, 145–152 (2016)
Talebzadeh, R., Soroosh, M., Kavian, Y.S., Mehdizadeh, F.: Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities. Optik-Internat. J. Light Electron. Opt. 140, 331–337 (2017)
Talebzadeh, R., Soroosh, M., Kavian, Y.S., Mehdizadeh, F.: All-optical 6- and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods. Photon. Net. Commun. 34, 248–257 (2017)
Talebzadeh, R., Soroosh, M., Mehdizadeh, F.: Improved low channel spacing high quality factor four-channel demultiplexer based on photonic crystal ring resonators. Opt. Appl. 46, 553–564 (2016)
Lin, W.P., Hsu, Y.F., Kuo, H.L.: Design of optical NOR logic gates using two dimension photonic crystals. Am. J. Mod. Phys. 2, 144–147 (2013)
Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: All optical NAND gate based on nonlinear photonic crystal ring resonators. Optik-Internat. J. Light Electron. 130, 1214–1221 (2017)
Alipour-Banaei, H., Seif-Dargahi, H.: Photonic crystal based 1-bit full-adder optical circuit by using ring resonators in a nonlinear structure. Photon. Nanostruct. Fundam. Appl. 24, 29–34 (2017)
Jiang, Y.C., Liu, S.B., Zhang, H.F., Kong, X.K.: Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals. Opt. Commun. 348, 90–94 (2015)
Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J. Mod. Opt. 64, 1233–1239 (2017)
Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt. Quan. Electron. 48, 20 (2016)
Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: H.: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11, 29–35 (2016)
Yang, Y.P., Lin, K.C., Yang, I.C., Lee, K.Y., Lee, W.Y., Tsai, Y.T.: All-optical photonic-crystal encoder capable of operating at multiple wavelengths. Optik-Internat. J. Light Electron. 142, 354–359 (2017)
Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photon. J. 9, 1–11 (2017)
Moniem, T.A., El-Din, E.S.: Design of integrated all optical digital to analog converter (DAC) using 2D photonic crystals. Opt. Commun. 402, 36–40 (2017)
Li, S., Yu, C., Kang, Z., Wei, S., Farrell, G., Wu, Q.: Experimental demonstration of impact of optical nonlinearity on photonic time stretched analog-to-digital converter based on photonic crystal fiber. Optik-Internat. J. Light Electron. 126, 4936–4939 (2015)
Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure. Appl. Opt. 56, 1799–1806 (2017)
Shinya, A., Mitsugi, S., Tanabe, T., Notomi, M., Yokohama, I., Takara, H.: All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab. Opt. Exp. 14, 1230–1235 (2006)
Notomi, M., Tanabe, T., Shinya, A., Kuramochi, E., Taniyama, H., Mitsugi, S.: Nonlinear and adiabatic control of high-Q photonic crystal nanocavities. Opt. Exp. 15, 17458–17481 (2017)
Abbasi, A., Noshad, M., Ranjbar, R., Kheradmand, R.: Ultra compact and fast All Optical Flip Flop design in photonic crystal platform. Opt. Commun. 285, 5073–5078 (2012)
Moniem, T.A.: All-optical S-R flip flop using 2-D photonic crystal. Opt. Quan. Electron. 47, 2843–2851 (2015)
Sun, J.Z., Li, J.S.: Photonic crystal-based waveguide terahertz wave set-reset latch. Optik-Internat. J. Light Electron. 145, 49–55 (2017)
Mano, M.M., Ciletti, M.D.: Digital Design: With an Introduction to the Verilog HDL, VHDL, and SystemVerilog. Prentice Hall, Englewood Cliffs (2017)
Ogusu, K., Yamasaki, J., Maeda, Sh: Linear and nonlinear optical properties of Ag–As–Se chalcogenide glasses for all-optical switching. Opt. Lett. 29, 265–269 (2004)
Haus, H.A.: Waves and fields in optoelectronics. Prentice Hall, Englewood Cliffs (1984)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zamanian-Dehkordi, S.S., Soroosh, M. & Akbarizadeh, G. An ultra-fast all-optical RS flip-flop based on nonlinear photonic crystal structures. Opt Rev 25, 523–531 (2018). https://doi.org/10.1007/s10043-018-0443-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10043-018-0443-2