Advertisement

Optical Review

, Volume 25, Issue 3, pp 456–462 | Cite as

3D printed plano-freeform optics for non-coherent discontinuous beam shaping

  • Bisrat G. Assefa
  • Toni Saastamoinen
  • Joris Biskop
  • Markku Kuittinen
  • Jari Turunen
  • Jyrki Saarinen
Special Section: Regular Paper The Twelfth Japan‑Finland Joint Symposium on Optics in Engineering (OIE’17), Niigata, Japan
  • 157 Downloads
Part of the following topical collections:
  1. The Twelfth Japan-Finland Joint Symposium on Optics in Engineering (OIE'17), Niigata, Japan

Abstract

The design, fabrication, and characterization of freeform optics for LED-based complex target irradiance distribution are challenging. Here, we investigate a 3D printing technology called Printoptical® technology in order to relax or push forward both the fabrication limits and LED-based applications of thick freeform lenses with small slope features. The freeform designs are carried out with an assumption of small-sized LED source using an existing point-source-based Tailoring method, which is available in the semi-commercial software. The numerical methods of the designs are characterized by ray-tracing software. The irradiance patterns of the 3D printed freeform lenses are promising considering the average shape conformity deviation of around ± 40 µm and center area surface roughness around ± 12 nm, which is to our knowledge by far the best result reported for 3D printed freeform lenses with a thickness greater than 1 mm. Applications of freeform lenses with discontinuous target irradiance distribution patterns are expected in eco-friendly energy efficient lighting such as in zebra-cross lighting.

Keywords

Freeform optics Non-imaging optics 3D printing Light-emitting diodes 

Notes

Acknowledgements

This work has been financial supported by the Finnish Funding Agency for Technology and Innovation (TEKES) through the project number 247126-4524. The work also supported by the Academy of Finland (Grant 285880). The authors thank Prof. Youri Meuret for his fruitful ideas and discussions on freeform optics, and acknowledge Jani Tervo, Henri Partanen, Pertti Pääkkönen, Tommi Itkonen, Markku Pekkarinen, Ville Kontturi and members of the 3D printing optics group at UEF for their valuable suggestions and help.

References

  1. 1.
    Schubert, E.F., Kim, J.K.: Solid-state light sources getting smart. Science 308(5726), 1274–1278 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Minano, J.C., Benitez, P., Narasimhan, B.: Freeform aplanatic systems as a limiting case of SMS. Opt. Express 24(12), 13173–13178 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Fournier, F.R., Cassarly, W.J., Rolland, J.P.: Fast free-form reflector generation using source target maps. Opt. Express 18(5), 5295–5304 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Fang, F., Cheng, Y., Zhang, X.: Design of freeform optics. Adv. Opt. Technol. 2(5–6), 445–453 (2013)ADSGoogle Scholar
  5. 5.
    Ries, H., Muschaweck, J.: Tailored freeform optical surfaces. J. Opt. Soc. Am. A 19(3), 590–595 (2002)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Assefa, B.G., Meuret, Y., Tervo, J., Saastamoinen, T., Kuittinen, M., Saarinen, J.: Evaluation of freeform lens designs for specific target distributions and fabrication using 3D printing. In: The 11th Japan-Finland Joint Symposium on Optics in Engineering (OIE2015) proceedings, p. 72 (2015)Google Scholar
  7. 7.
    Fang, F.Z., Zhang, X.D., Weckenmann, A., Zhang, G.X., Zhang, C.: Manufacturing and measurement of freeform optics. CIRP Ann. Manuf. Technol. 62, 823–846 (2013)CrossRefGoogle Scholar
  8. 8.
    Mutanen, J., Kaakkunen, J.J., Tuovinen, H., Hiltunen, J., Kivi, S., Toiviainen, M., Vayrynen, J., Laukkanen, J., Prokofiev, V., Paakkonen, P., Juuti, M., Kuittinen, M., Monkkonen, K.: Manufacturing of freeform mirror by milling and altering its optical characteristics by Ns-laser polishing and ALD coatings. Proc. SPIE 9192, 91921E (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Wheelwright, B., Angel, R.: Freeform illumination design with cartograms. In: Imaging and Applied Optics 2015, Technical Digest, OSA (online). Optical Society of America, paper FT4B.5 (2015)Google Scholar
  10. 10.
    Wang, K., Liu, S., Chen, F., Liu, Z.Y., Luo, X.: Effect of manufacturing defects on optical performance of discontinuous freeform lenses. Opt. Express 17(7), 5457–5465 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Hongtao, L., Shichao, C., Yanjun, H., Yi, L.: A fast feedback method to design easy-molding freeform optical system with uniform illuminance and high light control efficiency. Opt. Express 21(1), 1258–1269 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Caffrey, T., Wohlers, T., Campbell, I.: Wholers Report 2017:3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report. Wholers Association Inc., Fort Collins (2017)Google Scholar
  13. 13.
    Maillard, P., Heinrich, A.: 3D printed freeform optical sensors for metrology application. In: Proc. SPIE, Optical Systems Design 2015: Optical Fabrication, Testing, and Metrology V, 96281J, vol. 9628 (2015)Google Scholar
  14. 14.
    Takagishi, K., Umezu, S.: Development of the improving process for the 3D printed structure. Sci. Rep. 7, 39852 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Blessing, K., van de Vrie, R.: Print head, upgrade kit for a conventional inkjet printer, printer and method for printing optical structures. U.S. Patent Application No. 13/924,974Google Scholar
  16. 16.
    Blomaard, R., Biskop, J.: 3D inkjet printing of optics. NIP Digit. Fabr. Conf. 2015(1), 39–41 (2015)Google Scholar
  17. 17.
    Saarinen, J., van de Vrie, R.: Printed optics usher in new era of manufacturing. EuroPhotonics Winter 2014, 18–21 (2014)Google Scholar
  18. 18.
    Gissibl, T., Thiele, S., Herkommer, A., Giessen, H.: Two-photon direct laser writing of ultra-compact multi-lens objectives. Nat. Commun. 10, 554–560 (2016)Google Scholar
  19. 19.
    Thiele, S., Gissibl, T., Giessen, H., Herkommer, A.M.: Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing. Opt. Lett. 41(13), 3029–3032 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Moreno, I., Sun, C.-C., Ivanov, R.: Far-field condition for light-emitting diode arrays. Appl. Opt. 48(6), 1190–1197 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    ffOptik-Free-Form Illumination Optics.: http://www.ffoptik.com (2018). Accessed Mar 2018
  22. 22.
    Luxexcel 3D printed Optics.: https://www.luxexcel.com/ophthalmic-technology (2018). Accessed 2 Mar 2018

Copyright information

© The Optical Society of Japan 2018

Authors and Affiliations

  1. 1.Institute of PhotonicsJoensuuFinland
  2. 2.Research and Development, LuxexcelKruiningenThe Netherlands

Personalised recommendations