Optical Review

, Volume 25, Issue 2, pp 271–294 | Cite as

Resolution enhancement of pump–probe microscope with an inverse-annular filter

  • Takayoshi Kobayashi
  • Koshi Kawasumi
  • Jun Miyazaki
  • Kazuaki Nakata
Regular Paper


Optical pump–probe microscopy can provide images by detecting changes in probe light intensity induced by stimulated emission, photoinduced absorbance change, or photothermal-induced refractive index change in either transmission or reflection mode. Photothermal microscopy, which is one type of optical pump–probe microscopy, has intrinsically super resolution capability due to the bilinear dependence of signal intensity of pump and probe. We introduce new techniques for further resolution enhancement and fast imaging in photothermal microscope. First, we introduce a new pupil filter, an inverse-annular pupil filter in a pump–probe photothermal microscope, which provides resolution enhancement in three dimensions. The resolutions are proved to be improved in lateral and axial directions by imaging experiment using 20-nm gold nanoparticles. The improvement in X (perpendicular to the common pump and probe polarization direction), Y (parallel to the polarization direction), and Z (axial direction) are by 15 ± 6, 8 ± 8, and 21 ± 2% from the resolution without a pupil filter. The resolution enhancement is even better than the calculation using vector field, which predicts the corresponding enhancement of 11, 8, and 6%. The discussion is made to explain the unexpected results. We also demonstrate the photothermal imaging of thick biological samples (cells from rabbit intestine and kidney) stained with hematoxylin and eosin dye with the inverse-annular filter. Second, a fast, high-sensitivity photothermal microscope is developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope using a Galvano mirror. We confirm a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrates simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 µs. The fluorescence image visualizes neurons expressing yellow fluorescence proteins, while the photothermal signal detected endogenous chromophores in the mouse brain, allowing 3D visualization of the distribution of various features such as blood cells and fine structures most probably due to lipids. This imaging modality was constructed using compact and cost-effective laser diodes, and will thus be widely useful in the life and medical sciences. Third, we have made further resolution improvement of high-sensitivity laser scanning photothermal microscopy by applying non-linear detection. By this, the new method has super resolution with 61 and 42% enhancement from the diffraction limit values of the probe and pump wavelengths, respectively, by a second-order non-linear scheme and a high-frame rate in a laser scanning microscope. The maximum resolution is determined to be 160 nm in the second-order non-linear detection mode and 270 nm in the linear detection mode by the PT signal of GNPs. The pixel rate and frame rate for 300 × 300 pixel image are 50 µs and 4.5 s, respectively. The pixel and frame rate are shorter than the rates, those are 1 ms and 100 s, using the piezo-driven stage system.


Nonlinear microscopy Scanning microscopy Three-dimensional microscopy 


  1. 1.
    Samineni, P., deCruz, A., Villafana, T.E., Warren, W.S., Fischer, M.C.: Pump-probe imaging of historical pigments used in paintings. Opt. Lett. 37, 1310–1303 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Nechay, B.A., Siegner, U., Achermann, M., Bielefeldt, H., Keller, U.: Femtosecond pump-probe near-field optical microscopy. Rev. Sci. Instrum. 70, 2758–2764 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Dong, C.Y., Buehler, C., So, P.T., French, T., Gratton, E.: Implementation of intensity-modulated laser diodes in time-resolved, pump-probe fluorescence microscopy. Appl. Opt. 40, 1109–1115 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Matthews, T.E., Wilson, J.W., Degan, S., Simpson, M.J., Jin, J.Y., Zhang, J.Y., Warren, W.S.: In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature. J. Biomed. Opt. 2, 1576–1583 (2011)CrossRefGoogle Scholar
  5. 5.
    Min, W., Lu, S., Chong, S., Roy, R., Holtom, G.R., Xie, X.S.: Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. Nature. 461, 1105–1109 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Wei, L., Min, W.: Pump-probe optical microscopy for imaging nonfluorescent chromophores. Anal. Bioanal. Chem. 403, 2197–2202 (2012)CrossRefGoogle Scholar
  7. 7.
    Tokeshi, M., Uchida, M., Hibara, A., Sawada, T., Kitamori, T.: Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination. Anal. Chem. 73, 2112–2116 (2001)CrossRefGoogle Scholar
  8. 8.
    Berciaud, S., Cognet, L., Blab, G.A., Lounis, B.: Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. Phys. Rev. Lett. 93, 257402 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Lasne, D., Blab, G.A., Berciaud, S., Heine, M., Groc, L., Choquet, D., Cognet, L., Lounis, B.: Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live Cells. Biophys. J. 91, 4598–4604 (2006)CrossRefGoogle Scholar
  10. 10.
    Berciaud, S., Lasne, D., Blab, G.A., Cognet, L., Lounis, B.: Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment. Phys. Rev. B. 73, 045424 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Inglehart, L.J., Broniaotowski, A., Fournier, D., Boccara, A.C., Lepoutre, F.: Photothermal imaging of copper-decorated grain boundary in silicon. Appl. Phys. Lett. 56, 1749 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    Sahraoui, A.H., Kolinsky, C., Delenclos, S., Daoudi, A., Buisine, J.M.: Photothermal imaging as a tool to study phase transitions in binary mixtures of liquid crystals. J. Appl. Phys. 82, 6209 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Tamaki, E., Sato, K., Tokeshi, M., Sato, K., Aihara, M., Kitamori, T.: Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process. Anal. Chem. 74, 1560–1564 (2002)CrossRefGoogle Scholar
  14. 14.
    Nedosekin, D.A., Galanzha, E.I., Ayyadevara, S., Shmookler Reis, R.J., Zharov, V.P.: Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores. Biophys. J. 102, 672–681 (2012)CrossRefGoogle Scholar
  15. 15.
    Brusnichkin, A.V., Nedosekin, D.A., Galanzha, E.I., Vladimirov, Y.A., Shevtsova, E.F., Proskurnin, M.A., Zharov, V.P.: Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions. J. Biophoton. 3, 791–806 (2010)CrossRefGoogle Scholar
  16. 16.
    Lasne, D., Blab, G.A., Giorgi, F.D., Ichas, F., Lounis, B., Cognet, L.: Label-free optical imaging of mitochondria in live cells. Opt. Express. 15(21), 14184–14193 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Lu, S., Min, W., Chong, S., Holtom, G.R., Xie, X.S.: Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy. Appl. Phys. Lett. 96, 113701 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Miyazaki, J., Tsurui, H., Kawasumi, K., Kobayashi, T.: Simultaneous dual-wavelength imaging of nonfluorescent tissues with 3D subdiffraction photothermal microscopy. Opt. Express. 23(3), 3647–3656 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Zharov, V.P.: Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit. Nat. Photonics. 5, 110–116 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Nedosekin, D.A., Juratli, M.A., Sarimollaoglu, M., Moore, C.L., Rusch, N.J., Smeltzer, M.S., Zharov, V.P., Galanzha, E.I.: Photoacoustic and photothermal detection of circulating tumor cells, bacteria and nanoparticles in cerebrospinal fluid in vivo and ex vivo. J. Biophotonics. 6, 523–533 (2013)CrossRefGoogle Scholar
  21. 21.
    Cognet, L., Tardin, C., Boyer, D., Choquet, D., Tamarat, P., Lounis, B.: Single metallic nanoparticle imaging for protein detection in cells. Proc. Natl. Acad. Sci. USA. 100, 11350–11355 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Vermeulen, P., Cognet, L., Lounis, B.: Photothermal microscopy: optical detection of small absorbers in scattering environments. J. Microsc. 254, 115–121 (2014)CrossRefGoogle Scholar
  23. 23.
    Leduc, C., Si, S., Gautier, J., Soto-Ribeiro, M., Wehrle-Haller, B., Gautreau, A., Giannone, G., Cognet, L., Lounis, B.: A highly specific gold nanoprobe for live-cell single-molecule imaging. Nano Lett. 13, 1489–1494 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Leduc, C., Jung, J.M., Carney, R.P., Stellacci, F., Lounis, B.: Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging. ACS Nano. 5, 2587–2592 (2011)CrossRefGoogle Scholar
  25. 25.
    Miyazaki, J., Tsurui, H., Hayashi-Takagi, A., Kasai, H., Kobayashi, T.: Sub-diffraction resolution pump probe microscopy with shot-noise limited sensitivity using laser diodes. Opt. Express. 22, 9024–9032 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Miyazaki, J., Tsurui, H., Kawasumi, K., Kobayashi, T.: Optimal detection angle in sub-diffraction resolution photothermal microscopy: application for high sensitivity imaging of biological tissues. Opt. Express. 22, 18833–18842 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Miyazaki, J., Kawasumi, K., Kobayashi, T.: Resolution improvement in laser diodes-based pump probe microscopy with an annular pupil filter. Opt. Lett. 39, 4219–4222 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Miyazaki, J., Tsurui, H., Kawasumi, K., Kobayashi, T.: Sensitivity enhancement of photothermal microscopy with radially segmented balanced detection. Opt Lett. 40(4), 479–482 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Miyazaki, J., Tsurui, H., Kobayashi, T.: Reduction of distortion in photothermal microscopy and its application to the high resolution three-dimensional imaging of nonfluorescent tissues. Biomed. Opt. Exp. 6(9), 3217–3224 (2015)CrossRefGoogle Scholar
  30. 30.
    Sick, B., Hech, B.: Orientational Imaging of Single Molecules by Annular Illumination. Phys. Rev. Lett. 85, 4482–4485 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    Kim, J., Kim, D.C., Back, S.H.: Demonstration of high lateral resolution in laser confocal microscopy using annular and radially polarized light. Microsc. Res. Techniq. 72, 441–446 (2009)CrossRefGoogle Scholar
  32. 32.
    Kitamura, K., Sakai, K., Noda, S.: Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam. Opt. Express. 18, 4518–4525 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    He, J., Miyazaki, J., Wang, N., Tsurui, H., Kobayashi, T.: Label-free imaging of melanoma with nonlinear photothermal microscopy. Opt. Lett. 40(7), 1141–1144 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    He, J., Miyazaki, J., Wang, N., Tsurui, H., Kobayashi, T.: Biological imaging with nonlinear photothermal microscopy using a compact supercontinuum fiber laser source. Opt. Express. 23(8), 9762–9771 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Kildishev, A.V., Sivan, Y., Litchinitser, N.M., Shalaev, V.M.: Frequency-domain modeling of TM wave propagation in optical nanostructures with a third-order nonlinear response. Opt. Lett. 34(21), 3364–3366 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Chu, S.W., Su, T.Y., Oketani, R., Huang, Y.T., Wu, H.Y., Yonemaru, Y., Yamanaka, M., Lee, H., Zhuo, G.Y., Lee, M.Y., Kawata, S., Fujita, K.: Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope. Phys. Rev. Lett. 112, 017402 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Deka, G., Sun, C.K., Fujita, K., Chu, S.W.: Nonlinear plasmonic imaging techniques and their biological applications. Nanophotonics (2016) Google Scholar
  38. 38.
    Tzang, O., Cheshnovsky, O.: New modes in label-free super resolution based on photo-modulated reflectivity. Opt. Express. 23(16), 20926–20932 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Tzang, O., Pevzner, A., Marvel, R.E., Haglund, R.F., Cheshnovsky, O.: Super-resolution in label-free photomodulated reflectivity. Nano Lett. 15, 1362–1367 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    Jathoul, A.P., Laufer, J., Ogunlade, O., Treeby, B., Cox, B., Zhang, E., Johnson, P., Pizzey, A.R., Philip, B., Marafioti, T., Lythgoe, M.F., Pedley, R.B., Pule, M.A., Beard, P.: Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat. Photon. 9, 239–246 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    Yao, J., Wang, L., Yang, J.M., Maslov, K.I., Wong, T.T., Li, L., Huang, C.H., Zou, J., Wang, L.V.: High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods. 12, 407–410 (2015)CrossRefGoogle Scholar
  42. 42.
    Pache, C., Bocchio, N.L., Bouwens, A., Villiger, M., Berclaz, C., Goulley, J., Gibson, M.I., Santschi, C., Lasser, T.: Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy. Opt. Express. 20, 21385–21399 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    Tucker-Schwartz, J.M., Meyer, T.A., Patil, C.A., Duvall, C.L., Skala, M.C.: In vivo photothermal optical coherence tomography of gold nanorod contrast agents. Biomed. Opt. Express. 3, 2881–2895 (2012)CrossRefGoogle Scholar
  44. 44.
    Arunkarthick, S., Bijeesh, M.M., Varier, G.K., Kowshik, M., Nandakumar, P.: Laser scanning photothermal microscopy: fast detection and imaging of gold nanoparticles. J. Microsc. 256, 111–116 (2014)CrossRefGoogle Scholar
  45. 45.
    Chang, W.S., Link, S.: Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals. J. Phys. Chem. Lett. 3, 1393–1399 (2012)CrossRefGoogle Scholar
  46. 46.
    Parra-Vasquez, A.N.G., Oudjedi, L., Cognet, L., Lounis, B.: Nanoscale thermotropic phase transitions enhancing photothermal microscopy signals. J. Phys. Chem. Lett. 3, 1400–1403 (2012)CrossRefGoogle Scholar
  47. 47.
    Corral, M.M., Andres, P., Rodriguez, C.J.Z., Kowalczyk, M.: Three-dimensional superresolution by annular binary filters. Opt. Commun. 165, 267–278 (1999)ADSCrossRefGoogle Scholar
  48. 48.
    Corral, M.M., Andres, P., Castaiieda, J.O., Saavedra, G.: Tunable axial superresolution by annular binary filters. Application to confocal microscopy. Opt. Commun. 119, 491–498 (1995)ADSCrossRefGoogle Scholar
  49. 49.
    Richards, B., Wolf, E.: Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A. 253, 358–379 (1959)ADSCrossRefzbMATHGoogle Scholar
  50. 50.
    Youngworth, K.S., Brown, T.G.: Focusing of high numerical aperture cylindrical-vector beams. Opt. Express. 7, 77–87 (2000)ADSCrossRefGoogle Scholar
  51. 51.
    Selmke, M., Braun, M., Cichos, F.: Photothermal single-particle microscopy: detection of a nanolens. Nano Lett. 6. 2741–2749 (2012)Google Scholar
  52. 52.
    Conklin, M.W., Provenzano, P.P., Eliceiri, K.W., Sullivan, R., Keely, P.J.: Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast. Cell Biochem. Biophys. 53, 145–157 (2009)CrossRefGoogle Scholar
  53. 53.
    Apgar, J.M., Juarranz, A., Espada, J., Villanueva, A., Canete, M., Stockert, J.C.: Fluorescence microscopy of rat embryo sections stained with haematoxylin–eosin and Masson’s trichrome method. J. Microsc. 191, 20–27 (1997)CrossRefGoogle Scholar
  54. 54.
    de Carvalho, H.F., Taboga, S.R.: Fluorescence and confocal laser scanning microscopy imaging of elastic fibers in hematoxylin-eosin stained sections. Histochem. Cell Biol. 106, 587–592 (1996)CrossRefGoogle Scholar
  55. 55.
    Boyer, D., Tamarat, P., Maali, A., Lounis, B., Orrit, M.: Photothermal imaging of nanometer-sized metal particles among scatterers. Science. 297, 1160–1163 (2002)ADSCrossRefGoogle Scholar
  56. 56.
    Kwan, A.C., Duff, K., Gouras, G.K., Webb, W.W.: Optical visualization of Alzheimer’s pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation. Opt. Express. 17, 3679–3689 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    Krafft, C., Kirsch, M., Beleites, C., Schackert, G., Salzer, R.: Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains. Anal. Bioanal. Chem. 389, 1133–1142 (2007)CrossRefGoogle Scholar
  58. 58.
    Krafft, C.: Bioanalytical applications of Raman spectroscopy. Anal. Bioanal. Chem. 378, 60–62 (2004)CrossRefGoogle Scholar
  59. 59.
    Benseny-Cases, N., Klementieva, O., Cotte, M., Ferrer, I., Cladera, J.: Microspectroscopy (mu FTIR) reveals co-localization of lipid oxidation and amyloid plaques in human alzheimer disease brains. Anal. Chem. 86, 12047–12054 (2014)CrossRefGoogle Scholar
  60. 60.
    Dombeck, D.A., Kasischke, K.A., Vishwasrao, H.D., Ingelsson, M., Hyman, B.T., Webb, W.W.: Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy. Proc. Natl. Acad. Sci. USA. 100, 7081–7086 (2003)ADSCrossRefGoogle Scholar
  61. 61.
    Witte, S., Negrean, A., Lodder, J.C., de Kock, C.P., Testa Silva, G., Mansvelder, H.D., Louise Groot, M.: Label-free live brain imaging and targeted patching with third-harmonic generation microscopy. Proc. Natl. Acad. Sci. USA. 108, 5970–5975 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    Evans, C.L., Xu, X., Kesari, S., Xie, X.S., Wong, S.T., Young, G.S.: Chemically-selective imaging of brain structures with CARS microscopy. Opt. Express. 15, 12076–12087 (2007)ADSCrossRefGoogle Scholar
  63. 63.
    Freudiger, C.W., Min, W., Saar, B.G., Lu, S., Holtom, G.R., He, C., Tsai, J.C., Kang, J.X., Xie, X.S.: Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science. 322, 1857–1861 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    Hammond, B.R. Jr., Renzi, L.M.: Carotenoids, Adv. Nutr. 4, 474–476 (2013)CrossRefGoogle Scholar
  65. 65.
    Johnson, E.J.: A possible role for lutein and zeaxanthin in cognitive function in the elderly. Am. J. Clin. Nutr. 96, 1161S-1165S (2012)CrossRefGoogle Scholar
  66. 66.
    van der Meer, F.J., Faber, D.J., Cilesiz, I., van Gemert, M.J., van Leeuwen, T.G.: Temperature-dependent optical properties of individual vascular wall components measured by optical coherence tomography. J. Biomed. Opt. 11, 041120 (2006)CrossRefGoogle Scholar
  67. 67.
    Liu, J.P., Tang, Y., Zhou, S., Toh, B.H., McLean, C., Li, H.: Cholesterol involvement in the pathogenesis of neurodegenerative diseases. Mol. Cell. Neurosci. 43, 33–42 (2010)CrossRefGoogle Scholar
  68. 68.
    Xie, X., Li, D., Tsai, T.H., Liu, J., Braun, P.V., Cahill, D.G.: Thermal conductivity, heat capacity, and elastic constants of water-soluble polymers and polymer blends. Macromolecules. 49, 972 – 978 (2016)ADSCrossRefGoogle Scholar
  69. 69.
    Bama, G.K., Devi, P.I., Ramachandran, K.: Structural and thermal properties of PVDF/PVA blends. J. Mater. Sci. 44, 1302–1307 (2009)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2018

Authors and Affiliations

  • Takayoshi Kobayashi
    • 1
    • 2
    • 3
    • 4
  • Koshi Kawasumi
    • 1
  • Jun Miyazaki
    • 1
    • 2
  • Kazuaki Nakata
    • 1
    • 2
  1. 1.Advanced Ultrafast Laser Research CenterThe University of Electro-CommunicationsChofuJapan
  2. 2.JST, CRESTTokyoJapan
  3. 3.Department of ElectrophysicsNational Chiao-Tung UniversityHsinchuTaiwan
  4. 4.Institute of Laser EngineeringOsaka UniversitySuitaJapan

Personalised recommendations