Optical Review

, Volume 25, Issue 2, pp 254–263 | Cite as

Autostereoscopic three-dimensional display by combining a single spatial light modulator and a zero-order nulled grating

  • Yanfeng Su
  • Zhijian Cai
  • Quan Liu
  • Yifan Lu
  • Peiliang Guo
  • Lingyan Shi
  • Jianhong Wu
Regular Paper


In this paper, an autostereoscopic three-dimensional (3D) display system based on synthetic hologram reconstruction is proposed and implemented. The system uses a single phase-only spatial light modulator to load the synthetic hologram of the left and right stereo images, and the parallax angle between two reconstructed stereo images is enlarged by a grating to meet the split angle requirement of normal stereoscopic vision. To realize the crosstalk-free autostereoscopic 3D display with high light utilization efficiency, the groove parameters of the grating are specifically designed by the rigorous coupled-wave theory for suppressing the zero-order diffraction, and then the zero-order nulled grating is fabricated by the holographic lithography and the ion beam etching. Furthermore, the diffraction efficiency of the fabricated grating is measured under the illumination of a laser beam with a wavelength of 532 nm. Finally, the experimental verification system for the proposed autostereoscopic 3D display is presented. The experimental results prove that the proposed system is able to generate stereoscopic 3D images with good performances.


Three-dimensional display Holographic display Spatial light modulator Diffraction grating Rigorous coupled-wave theory 



This work is supported by the National Natural Science Foundation of China (NSFC) (Grant No. 51405317), Natural Science Foundation of Jiangsu Province (Grant No. BK20140358), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Wheatstone, C.: Contributions to the physiology of vision-part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philos. Trans. R. Soc. Lond. 128, 371 (1838)CrossRefGoogle Scholar
  2. 2.
    Dodgson, N.A.: Autostereoscopic 3D displays. Computer. 38, 31 (2005)CrossRefGoogle Scholar
  3. 3.
    Park, J.-H., Hong, K., Lee, B.: Recent progress in three-dimensional information processing based on integral imaging. Appl. Opt. 48, H77 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Smalley, D.E., Smithwick, Q.Y.J., Jr, V.M.B., Barabas, J., Jolly, S.: Anisotropic leaky-mode modulator for holographic video displays. Nature. 498, 313 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Downing, E., Hesselink, L., Ralston, J., Macfarlane, R.: A three-color, solid-state, three-dimensional display. Science. 273, 1185 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    Tay, S., Blanche, P.A., Voorakaranam, R., Tunc, A.V., Lin, W., Rokutanda, S., Gu, T., Flores, D., Wang, P., Li, G., Hilaire, P.S., Thomas, J., Norwood, R.A., Yamamoto, M., Peyghambarian, N.: An updatable holographic three-dimensional display. Nature. 451, 694 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Blanche, P.A., Bablumian, A., Voorakaranam, R., Christenson, C., Lin, W., Gu, T., Flores, D., Wang, P., Hsieh, W.Y., Kathaperumal, M., Rachwal, B., Siddiqui, O., Thomas, J., Norwood, R.A., Yamamoto, M., Peyghambarian, N.: Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature. 468, 80 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Son, J.Y., Javidi, B.: Three-dimensional imaging methods based on multiview images. J. Disp. Technol. 1, 125 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Chang, Y.-C., Jen, T.-H., Ting, C.-H., Huang, Y.-P.: High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display. Opt. Express. 22, 2714 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Lv, G.-J., Wang, J., Zhao, W.-X., Wang, Q.-H.: Three-dimensional display based on dual parallax barriers with uniform resolution. Appl. Opt. 52, 6011 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Zhao, W.-X., Wang, Q.-H., Wang, A.-H., Li, D.H.: Autostereoscopic display based on two-layer lenticular lenses. Opt. Lett. 35, 4127 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Choi, K., Kim, H., Lee, B.: Synthetic phase holograms for auto-stereoscopic image displays using a modified IFTA. Opt. Express. 12, 2454 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Choi, K., Kim, H., Lee, B.: Full-color autostereoscopic 3D display system using color-dispersion-compensated synthetic phase holograms. Opt. Express. 12, 5229 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Fattal, D., Peng, Z., Tran, T., Vo, S., Fiorentino, M., Brug, J., Beausoleil, R.G.: A multi-directional backlight for a wide-angle, glasses-free three-dimensional display. Nature. 495, 348 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Harvey, J.E., Vernold, C.L.: Description of diffraction grating behavior in direction cosine space. Appl. Opt. 37, 8158 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    Gerchberg, R.W., Saxton, W.O.: A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik. 35, 237 (1972)Google Scholar
  17. 17.
    Wang, D., Liu, C., Shen, C., Zhou, X., Wang, Q.-H.: A holographic zoom system without undesirable light. Optik. 127, 7782 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Liu, Y.-Z., Pang, X.-N., Jiang, S., Dong, J.-W.: Viewing-angle enlargement in holographic augmented reality using time division and spatial tiling. Opt. Express. 21, 12068 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Yaras, F., Kang, H., Onural, L.: Circular holographic video display. Opt. Express. 19, 9147 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Su, W.-C., Chen, C.-Y., Wang, Y.-F.: Stereogram implemented with a holographic image splitter. Opt. Express. 19, 9942 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Deng, Q.-L., Su, W.-C., Chen, C.-Y., Lin, B.-S., Ho, H.-W.: Full color image splitter based on holographic optical elements for stereogram application. J. Disp. Technol. 9, 607 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Moharam, M.G., Grann, E.B., Pommet, D.A., Gaylord, T.K.: Formulation for stable and efficiency implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A. 12, 1068 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    Qiu, Y., Sheng, Y., Beaulieu, C.: Optimal phase mask for fiber Bragg grating fabrication. J. Lightwave Technol. 17, 2366 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Agour, M., Kolenovic, E., Falldorf, C., Kopylow, C.v.: Suppression of higher diffraction orders and intensity improvement of optically reconstructed holograms from a spatial light modulator. J. Opt. A. Pure. Appl. Opt. 11, 105405 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Zhang, H., Xie, J., Liu, J., Wang, Y.: Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection. Appl. Opt. 48, 5834 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Moon, E., Kim, M., Roh, J., Kim, H., Hahn, J.: Holographic head-mounted display with RGB light emitting diode light source. Opt. Express. 22, 6526 (2014)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2018

Authors and Affiliations

  • Yanfeng Su
    • 1
    • 2
  • Zhijian Cai
    • 1
    • 2
  • Quan Liu
    • 1
    • 2
  • Yifan Lu
    • 1
    • 2
  • Peiliang Guo
    • 1
    • 2
  • Lingyan Shi
    • 1
    • 2
  • Jianhong Wu
    • 1
    • 2
  1. 1.College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhouChina
  2. 2.Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of ChinaSoochow UniversitySuzhouChina

Personalised recommendations