Advertisement

Optical Review

, Volume 25, Issue 2, pp 237–243 | Cite as

Required minimum cavity dispersion in stable, graphene mode-locked, Yb-doped fiber lasers

  • Huiyun Han
  • Xingliang Li
  • Mengmeng Han
  • Jingmin Liu
  • Dan Yan
  • Zhenjun Yang
  • Ce Shang
  • Yali Feng
  • Shumin Zhang
Regular Paper

Abstract

We have numerically investigated the required minimum cavity dispersion (RMCD) for obtaining stable pulses in net normal dispersion, graphene mode-locked, Yb-doped fiber lasers (YDFLs). By solving the modified nonlinear Schrödinger equation, we have found that the value of the RMCD was mainly affected by the nonsaturable absorption losses in the graphene saturable absorber (SA), and when monolayer graphene was used as the SA, this value was less than that obtained using multilayer graphene as the SA. We have also found that monolayer graphene YDFLs were more suitable for generating high-power, narrow-width pulses than were multilayer graphene YDFLs.

Keywords

Fiber laser Graphene saturable absorber Ultrashort pulse Cavity dispersion Nonsaturable absorption loss 

Notes

Acknowledgements

This research was supported by grants from the National Natural Science Foundation of China (Grant numbers 11374089, 61605040, 11074065, and 61308016), the Hebei Natural Science Foundation (Grant numbers F2017205162, F2017205060, F2016205124, and F2012205076), the Science Foundation of Hebei Normal University (Grant number L2016B07), and the Graduate Scientific Innovative Foundation of Hebei Province Department of Education Fund (Grant number sj2016024).

References

  1. 1.
    Hofer, M., Ober, M.H., Haberl, F., Fermann, M.E.: Characterization of ultrashort pulse formation in passively mode-locked fiber lasers. IEEE J. Quantum Electron. 28(3), 720–728 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    Fermann, M.E., Stock, M.L., Andrejco, M.J., Silberberg, Y.: Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber. Opt. Lett. 18(11), 894–896 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    Matsas, V.J., Newson, T.P., Richardson, D.J., Payne, D.N.: Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation. Electron. Lett. 28(15), 1391–1393 (1992)CrossRefGoogle Scholar
  4. 4.
    Tamura, K., Haus, H.A., Ippen, E.P.: Self-starting additive pulse mode-locked erbium fibre ring laser. Electron. Lett. 28(24), 2226–2228 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    Doran, N.J., Wood, D.: Nonlinear-optical loop mirror. Opt. Lett. 13(1), 56–58 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    Duling, I.N., Chen, C.J., Wai, P.K.A., Menyuk, C.R.: Operation of a nonlinear loop mirror in a laser cavity. IEEE J. Quantum Electron. 30(1), 194–199 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    Fermann, M.E., Haberl, F., Hofer, M., Hochreiter, H.: Nonlinear amplifying loop mirror. Opt. Lett. 15(13), 752–754 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    Richardson, D.J., Laming, R.I., Payne, D.N., Matsas, V., Phillips, M.W.: Selfstarting, passively modelocked erbium fiber laser based on the amplifying Sagnac switch. Electron. Lett. 27(6), 542–544 (1991)CrossRefGoogle Scholar
  9. 9.
    Okhotnikov, O.G., Gomes, L., Xiang, N., Jouhti, T., Grudinin, A.B.: Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range. Opt. Lett. 28(17), 1522–1524 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Set, S.Y., Yaguchi, H., Tanaka, Y., Jablonski, M.: Laser mode locking using a saturable absorber incorporating carbon nanotubes. J. Lightwave Technol. 22(1), 51–56 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Yamashita, S., Inoue, Y., Maruyama, S., Murakami, Y., Yaguchi, H., Jablonski, M., Set, S.Y.: Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. Opt. Lett. 29(14), 1581–1583 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Bao, Q., Zhang, H., Wang, Y., Ni, Z., Yan, Y., Shen, Z.X., Loh, K.P., Tang, D.Y.: Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19(19), 3077–3083 (2009)CrossRefGoogle Scholar
  13. 13.
    Hasan, T., Sun, Z., Wang, F., Bonaccorso, F., Tan, P.H., Rozhin, A.G., Ferrari, A.C.: Nanotube–polymer composites for ultrafast photonics. Adv. Mater. 21(38–39), 3874–3899 (2009)CrossRefGoogle Scholar
  14. 14.
    Chen, Y., Jiang, G., Chen, S., Guo, Z., Yu, X., Zhao, C., Zhang, H., Bao, Q., Wen, S., Tang, D., Fan, D.: Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. Opt. Express. 23(10), 12823–12833 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Zhao, C., Zhang, H., Qi, X., Chen, Y., Wang, Z., Wen, S., Tang, D.: Ultra-short pulse generation by a topological insulator based saturable absorber. Appl. Phys. Lett. 101(21), 211106 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Keller, U., Weingarten, K.J., Kärtner, F.X., Kopf, D., Braun, B., Jung, I.D., Fluck, R., Hönninger, C., Matuschek, N., Au, D.: J.A.: Semiconductor saturable absorber mirrors (SESAMs) for femtosecond and nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996)CrossRefGoogle Scholar
  17. 17.
    Martinez, A., Sun, Z.: Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics. 7(11), 842–845 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Koenig, S.P., Doganov, R.A., Schmidt, H., Castro Neto, A.H., Özyilmaz, B.: Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104(10), 103106 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., Bansil, A., Grauer, D., Hor, Y.S., Cava, R.J., Hasan, M.Z.: Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5(6), 398–402 (2009)CrossRefGoogle Scholar
  20. 20.
    Luo, Z., Huang, Y., Wang, J., Cheng, H., Cai, Z., Ye, C.: Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper. IEEE Photon. Technol. Lett. 24(17), 1539–1542 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Bao, Q., Zhang, H., Ni, Z., Wang, Y., Polavarapu, L., Shen, Z., Xu, Q.H., Tang, D., Loh, K.P.: Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res. 4(3), 297–307 (2011)CrossRefGoogle Scholar
  22. 22.
    Rosa, H.G., Castañeda, J.A., Cruz, C.H.B., Padilha, L.A., Gomes, J.C.V., Thoroh de Souza, E.A., Fragnito, H.L.: Controlled stacking of graphene monolayer saturable absorbers for ultrashort pulse generation in erbium-doped fiber lasers. Opt. Mater. Express. 7(7), 2528–2537 (2017)CrossRefGoogle Scholar
  23. 23.
    Krajewska, A., Pasternak, I., Sobon, G., Sotor, J., Przewloka, A., Ciuk, T., Sobieski, J., Grzonka, J., Abramski, K.M., Strupinski, W.: Fabrication and applications of multi-layer graphene stack on transparent polymer. Appl. Phys. Lett. 110(4), 041901 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Kieu, K., Wise, F.W.: Self-similar and stretched-pulse operation of erbium-doped fiber lasers with carbon nanotubes saturable absorbers. In: Conference on lasers and electro-optics (Optical Society of America, 2009), paper CML3Google Scholar
  25. 25.
    Nishizawa, N., Nozaki, Y., Itoga, E., Kataura, H., Sakakibara, Y.: Dispersion-managed, high-power, Er-doped ultrashort-pulse fiber laser using carbon-nanotube polyimide film. Opt. Express. 19(22), 21874–21879 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Nozaki, Y., Nishizawa, N., Omoda, E., Kataura, H., Sakakibara, Y.: Power scaling of dispersion-managed Er-doped ultrashort pulse fiber laser with single wall carbon nanotubes. Opt. Lett. 37(24), 5079–5081 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Kwon, W.S., Lee, H., Kim, J.H., Choi, J., Kim, K.S., Kim, S.: Ultrashort stretched-pulse L-band laser using carbon-nanotube saturable absorber. Opt. Express. 23(6), 7779–7785 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Liu, H.H., Chow, K.K.: Enhanced stability of dispersion-managed mode-locked fiber lasers with near-zero net cavity dispersion by high-contrast saturable absorbers. Opt. Lett. 39(1), 150–153 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Paschotta, R., Nilsson, J., Tropper, A.C., Hanna, D.C.: Ytterbium-doped fiber amplifiers. IEEE J. Quantum Electron. 33(7), 1049–1056 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    Ilday, F., Buckley, J.R., Lim, H., Wise, F.W., Clark, W.G.: Generation of 50-fs, 5-nJ pulses at 1.03 µm from a wave-breaking-free fiber laser. Opt. Lett. 28(15), 1365–1367 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Ilday, F., Buckley, J.R., Clark, W.G., Wise, F.W.: Self-similar evolution of parabolic pulses in a laser. Phys. Rev. Lett. 92(21), 213902 (2004)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2018

Authors and Affiliations

  1. 1.College of Physics Science and Information Engineering, Hebei Advanced Thin Films LaboratoryHebei Normal UniversityShijiazhuangChina

Personalised recommendations