Advertisement

Optical Review

, Volume 25, Issue 3, pp 391–396 | Cite as

Three-dimensional weight-accumulation algorithm for generating multiple excitation spots in fast optical stimulation

  • Yu Takiguchi
  • Haruyoshi Toyoda
Special Section: Regular Paper Biomedical Imaging and Sensing Conference (BISC’17), Yokohama, Japan
  • 68 Downloads
Part of the following topical collections:
  1. Biomedical Imaging and Sensing Conference (BISC'17), Yokohama, Japan

Abstract

We report here an algorithm for calculating a hologram to be employed in a high-access speed microscope for observing sensory-driven synaptic activity across all inputs to single living neurons in an intact cerebral cortex. The system is based on holographic multi-beam generation using a two-dimensional phase-only spatial light modulator to excite multiple locations in three dimensions with a single hologram. The hologram was calculated with a three-dimensional weighted iterative Fourier transform method using the Ewald sphere restriction to increase the calculation speed. Our algorithm achieved good uniformity of three dimensionally generated excitation spots; the standard deviation of the spot intensities was reduced by a factor of two compared with a conventional algorithm.

Keywords

Spatial light modulators Liquid–crystal devices Multi-beam generation Brain activity monitoring Laser beam shaping 

Notes

Acknowledgements

The authors are grateful to A. Hiruma (president) and T. Hara (director) of Hamamatsu Photonics for their encouragement throughout this work, as well as to Y. Ohtake, T. Ando, T. Inoue, T. Otsu-Hyodo and H. Sakai for their helpful support with the spatial light modulator and optical setup. This work was partially accomplished as a collaboration between the Laser Biomedical Research Center (Massachusetts Institute of Technology) and Hamamatsu Photonics K.K. A part of this study was supported by a JSPS Grant-in-Aid for Specially Promoted Research, Grant number JP16H06289.

References

  1. 1.
    Bear, M.F., Connors, B., Paradiso, M.: Neuroscience: Exploring the Brain, 4th edn. Wolters Kluwer, Lippincott Williams & Wilkins, UK (2016)Google Scholar
  2. 2.
    Denk, W., Strickler, J., Webb, W.: Two-photon laser scanning fluorescence microscopy. Science. 248, 73–76 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    Saloméa, R., Kremera, Y., Dieudonnéa, S., Légera, J.-F., Krichevskyc, O., Wyarta, C., Chatenayb, D., Bourdieua, L.: Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. J. Neuro. Methods. 154(1–2), 161–174 (2006)CrossRefGoogle Scholar
  4. 4.
    Duemani Reddy, G., Kelleher, K., Fink, R., Saggau, P.: Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat. Neurosci. 11(6), 713–720 (2008)CrossRefGoogle Scholar
  5. 5.
    Takiguchi, Y., Seo, M.-W., Kagawa, K., Takamoto, H., Inoue, T., Kawahito, S., Terakawa, S.: Mechanical scanner-less multi-beam confocal microscope with wavefront modulation. Opt. Rev. 23(2), 364–368 (2016)CrossRefGoogle Scholar
  6. 6.
    Igasaki, Y., Li, F., Yoshida, N., Toyoda, H., Inoue, T., Kobayashi, Y., Mukohzaka, N., Hara, T.: High efficiency electrically addressable phase-only spatial light modulator. Opt. Rev. 6, 339–344 (1999)CrossRefGoogle Scholar
  7. 7.
    Inoue, T., Tanaka, H., Fukuchi, N., Takumi, M., Matsumoto, N., Hara, T., Yoshida, N., Igasaki, Y., Kobayashi, Y.: LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation. Proc. SPIE. 6487, 64870Y (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Takiguchi, Y., Otsu, T., Inoue, T., Toyoda, H.: Self-distortion compensation of spatial light modulator under temperature varying conditions. Opt. Express. 22, 16087–16098 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Goodman, J.W.: Introduction to fourier optics, 3rd edn. Springer, USA (2005)Google Scholar
  10. 10.
    Gerchberg, W.O., Saxton, R.W.: A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik. 35, 237–246 (1972)Google Scholar
  11. 11.
    Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982)ADSCrossRefGoogle Scholar
  12. 12.
    Ripoll, O., Kettunen, V., Herzig, H.P.: Review of iterative Fourier-transform algorithms for beam shaping applications. Opt. Eng. 43, 2549–2556 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Farn, M.W.: New Iterative algorithm for the design of phase-only gratings. Proceedings of SPIE 1555, Computer and optically generated holographic optics, 4th in a series (1991). https://doi.org/10.1117/12.50619
  14. 14.
    Di Leonardo, R., Ianni, F., Ruocco, G.: Computer generation of optimal holograms for optical trap arrays. Opt. Express. 15, 1913–1922 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Wolf, E.: Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Comm. 1(4), 153–156 (1969)ADSCrossRefGoogle Scholar
  16. 16.
    Leseberg, D.: Computer-generated three-dimensional image holograms. Appl. Opt. 31(2), 223–229 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    Ewald, P.P.: Introduction to the dynamical theory of X-ray diffraction, acta crystallographica section A: crystal physics, diffraction. Theor. Gen. Crystallogr. 25, 103–108 (1969)Google Scholar
  18. 18.
    Matsumoto, N., Inoue, T., Ando, T., Takiguchi, Y., Ohtake, Y., Toyoda, H.: High-quality generation of a multispot pattern using a spatial light modulator with adaptive feedback. Opt. Lett. 37(15), 3135–3237 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Youngworth, K.S., Brown, T.G.: Focusing of high numerical aperture cylindrical-vector beams. Opt. Express. 7, 77–87 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Takiguchi, Y., Ando, T., Ohtake, Y., Inoue, T., Toyoda, H.: Effects of dielectric planar interface on tight focusing coherent beam: direct comparison between observations and vectorial calculation of lateral focal patterns. J. Opt. Soc. Am. A. 30, 2605–2610 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Davis, J.A., McNamara, D.E., Cottrell, D.M., Sonehara, T.: Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator. Appl. Opt. 39(10), 1549–1554 (2000)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2017

Authors and Affiliations

  1. 1.Central Research LaboratoryHamamatsu Photonics K.K.HamamatsuJapan

Personalised recommendations