Experimental assessment and analysis of super-resolution in fluorescence microscopy based on multiple-point spread function fitting of spectrally demultiplexed images

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


This paper presents an experimental assessment and analysis of super-resolution microscopy based on multiple-point spread function fitting of spectrally demultiplexed images using a designed DNA structure as a test target. For the purpose, a DNA structure was designed to have binding sites at a certain interval that is smaller than the diffraction limit. The structure was labeled with several types of quantum dots (QDs) to acquire their spatial information as spectrally encoded images. The obtained images are analyzed with a point spread function multifitting algorithm to determine the QD locations that indicate the binding site positions. The experimental results show that the labeled locations can be observed beyond the diffraction-limited resolution using three-colored fluorescence images that were obtained with a confocal fluorescence microscope. Numerical simulations show that labeling with eight types of QDs enables the positions aligned at 27.2-nm pitches on the DNA structure to be resolved with high accuracy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Schermelleh, L., Heintzmann, R., Leonhardt, H.: A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175 (2010)

    Article  Google Scholar 

  2. 2.

    Rust, M.J., Bates, M., Zhuang, X.: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006)

    Article  Google Scholar 

  3. 3.

    Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J., Hess, H.F.: Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006)

    ADS  Article  Google Scholar 

  4. 4.

    Sharonov, A., Hochstrasser, R.M.: Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl. Acad. Sci. USA 103, 18911–18916 (2006)

    ADS  Article  Google Scholar 

  5. 5.

    Thompson, R.E., Larson, D.R., Webb, W.W.: Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002)

    Article  Google Scholar 

  6. 6.

    Lacoste, T.D., Michalet, X., Pinaud, F., Chemla, D.S., Alivisatos, A.P., Weiss, S.: Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc. Natl. Acad. Sci. USA 97, 9461–9466 (2000)

    ADS  Article  Google Scholar 

  7. 7.

    Kakizuka, T., Ikezaki, K., Kaneshiro, J., Fujita, H., Watanabe, T.M., Ichimura, T.: Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots. Biomed. Opt. Express 7, 2475–2493 (2016)

    Article  Google Scholar 

  8. 8.

    Cutler, P.J., Malik, M.D., Liu, S., Byars, J.M., Lidke, D.S., Lidke, K.A.: Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope. PLoS One 8, e64320 (2013)

    ADS  Article  Google Scholar 

  9. 9.

    Holden, S.J., Uphoff, S., Kapanidis, A.N.: DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat. Methods 8, 279–280 (2011)

    Article  Google Scholar 

  10. 10.

    Manzo, C., Zanten, T.S., Saha, S., Torreno-Pina, J.A., Mayor, S., Garcia-Parajo, M.F.: PSF decomposition of nanoscopy images via Bayesian analysis unravels distinct molecular organization of the cell membrane. Sci. Rep. 4, 4354 (2014)

    Article  Google Scholar 

  11. 11.

    Mukamel, E.A., Babcock, H., Zhuang, X.: Statistical deconvolution for superresolution fluorescence microscopy. Biophys. J. 102, 2391–2400 (2012)

    ADS  Article  Google Scholar 

  12. 12.

    Min, J., Vonesch, C., Kirshner, H., Carlini, L., Olivier, N., Holden, S., Manley, S., Ye, J.C., Unser, M.: FALCON: Fast and unbiased reconstruction of high-density super-resolution microscopy data. Sci. Rep. 4, 1 (2014)

    Google Scholar 

  13. 13.

    Nishimura, T., Kimura, H., Ogura, Y., Tanida, J.: Fluorescence encoded super resolution imaging based on a location estimation algorithm for high-density fluorescence probes. Opt. Rev. 24, 212–218 (2017)

    Article  Google Scholar 

  14. 14.

    Song, M., Karatutlu, A., Ali, I., Ersoy, O., Zhou, Y., Yang, Y., Zhang, Y., Little, W.R., Wheeler, A.P., Sapelkin, A.V.: Spectroscopic super-resolution fluorescence cell imaging using ultra-small Ge quantum dots. Opt. Express. 25, 4240–4253 (2017)

    ADS  Article  Google Scholar 

  15. 15.

    Nishimura, T., Ogura, Y., Tanida, J.: Fluorescence resonance energy transfer-based molecular logic circuit using a DNA scaffold. Appl. Phys. Lett. 101, 233703 (2012)

    ADS  Article  Google Scholar 

  16. 16.

    Fujii, R., Nishimura, T., Ogura, Y., Tanida, J.: Nanoscale energy-route selector consisting of multiple photo-switchable fluorescence-resonance-energy-transfer structures on DNA. Opt. Rev. 22, 316 (2015)

    Article  Google Scholar 

  17. 17.

    Nishimura, T., Fujii, R., Ogura, Y., Tanida, J.: Optically controllable molecular logic circuits. Appl. Phys. Lett. 107, 013701 (2015)

    ADS  Article  Google Scholar 

  18. 18.

    Dai, M., Jungmann, R., Yin, P.: Optical imaging of individual biomolecules in densely packed clusters. Nat. Nonotechnol. 11, 798–807 (2016)

    ADS  Article  Google Scholar 

Download references


This research was supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) 16K16408, a Joint Research Grant from the National Institutes of Natural Sciences (NINS), and Hikari-Mirai Young Scientist Grant 2016 of Optical Society of Japan.

Author information



Corresponding author

Correspondence to Takahiro Nishimura.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nishimura, T., Kimura, H., Ogura, Y. et al. Experimental assessment and analysis of super-resolution in fluorescence microscopy based on multiple-point spread function fitting of spectrally demultiplexed images. Opt Rev 25, 384–390 (2018). https://doi.org/10.1007/s10043-017-0379-y

Download citation


  • Fluorescence imaging
  • Super-resolution
  • Fluorescence
  • Fluorescence coding
  • Multiple-PSF fitting