Advertisement

Optical Review

, Volume 25, Issue 3, pp 384–390 | Cite as

Experimental assessment and analysis of super-resolution in fluorescence microscopy based on multiple-point spread function fitting of spectrally demultiplexed images

  • Takahiro NishimuraEmail author
  • Hitoshi Kimura
  • Yusuke Ogura
  • Jun Tanida
Special Section: Regular Paper Biomedical Imaging and Sensing Conference (BISC’17), Yokohama, Japan
  • 232 Downloads
Part of the following topical collections:
  1. Biomedical Imaging and Sensing Conference (BISC’17), Yokohama, Japan

Abstract

This paper presents an experimental assessment and analysis of super-resolution microscopy based on multiple-point spread function fitting of spectrally demultiplexed images using a designed DNA structure as a test target. For the purpose, a DNA structure was designed to have binding sites at a certain interval that is smaller than the diffraction limit. The structure was labeled with several types of quantum dots (QDs) to acquire their spatial information as spectrally encoded images. The obtained images are analyzed with a point spread function multifitting algorithm to determine the QD locations that indicate the binding site positions. The experimental results show that the labeled locations can be observed beyond the diffraction-limited resolution using three-colored fluorescence images that were obtained with a confocal fluorescence microscope. Numerical simulations show that labeling with eight types of QDs enables the positions aligned at 27.2-nm pitches on the DNA structure to be resolved with high accuracy.

Keywords

Fluorescence imaging Super-resolution Fluorescence Fluorescence coding Multiple-PSF fitting 

Notes

Acknowledgements

This research was supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) 16K16408, a Joint Research Grant from the National Institutes of Natural Sciences (NINS), and Hikari-Mirai Young Scientist Grant 2016 of Optical Society of Japan.

References

  1. 1.
    Schermelleh, L., Heintzmann, R., Leonhardt, H.: A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175 (2010)CrossRefGoogle Scholar
  2. 2.
    Rust, M.J., Bates, M., Zhuang, X.: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006)CrossRefGoogle Scholar
  3. 3.
    Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J., Hess, H.F.: Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Sharonov, A., Hochstrasser, R.M.: Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl. Acad. Sci. USA 103, 18911–18916 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Thompson, R.E., Larson, D.R., Webb, W.W.: Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002)CrossRefGoogle Scholar
  6. 6.
    Lacoste, T.D., Michalet, X., Pinaud, F., Chemla, D.S., Alivisatos, A.P., Weiss, S.: Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc. Natl. Acad. Sci. USA 97, 9461–9466 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Kakizuka, T., Ikezaki, K., Kaneshiro, J., Fujita, H., Watanabe, T.M., Ichimura, T.: Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots. Biomed. Opt. Express 7, 2475–2493 (2016)CrossRefGoogle Scholar
  8. 8.
    Cutler, P.J., Malik, M.D., Liu, S., Byars, J.M., Lidke, D.S., Lidke, K.A.: Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope. PLoS One 8, e64320 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Holden, S.J., Uphoff, S., Kapanidis, A.N.: DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat. Methods 8, 279–280 (2011)CrossRefGoogle Scholar
  10. 10.
    Manzo, C., Zanten, T.S., Saha, S., Torreno-Pina, J.A., Mayor, S., Garcia-Parajo, M.F.: PSF decomposition of nanoscopy images via Bayesian analysis unravels distinct molecular organization of the cell membrane. Sci. Rep. 4, 4354 (2014)CrossRefGoogle Scholar
  11. 11.
    Mukamel, E.A., Babcock, H., Zhuang, X.: Statistical deconvolution for superresolution fluorescence microscopy. Biophys. J. 102, 2391–2400 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Min, J., Vonesch, C., Kirshner, H., Carlini, L., Olivier, N., Holden, S., Manley, S., Ye, J.C., Unser, M.: FALCON: Fast and unbiased reconstruction of high-density super-resolution microscopy data. Sci. Rep. 4, 1 (2014)Google Scholar
  13. 13.
    Nishimura, T., Kimura, H., Ogura, Y., Tanida, J.: Fluorescence encoded super resolution imaging based on a location estimation algorithm for high-density fluorescence probes. Opt. Rev. 24, 212–218 (2017)CrossRefGoogle Scholar
  14. 14.
    Song, M., Karatutlu, A., Ali, I., Ersoy, O., Zhou, Y., Yang, Y., Zhang, Y., Little, W.R., Wheeler, A.P., Sapelkin, A.V.: Spectroscopic super-resolution fluorescence cell imaging using ultra-small Ge quantum dots. Opt. Express. 25, 4240–4253 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Nishimura, T., Ogura, Y., Tanida, J.: Fluorescence resonance energy transfer-based molecular logic circuit using a DNA scaffold. Appl. Phys. Lett. 101, 233703 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Fujii, R., Nishimura, T., Ogura, Y., Tanida, J.: Nanoscale energy-route selector consisting of multiple photo-switchable fluorescence-resonance-energy-transfer structures on DNA. Opt. Rev. 22, 316 (2015)CrossRefGoogle Scholar
  17. 17.
    Nishimura, T., Fujii, R., Ogura, Y., Tanida, J.: Optically controllable molecular logic circuits. Appl. Phys. Lett. 107, 013701 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Dai, M., Jungmann, R., Yin, P.: Optical imaging of individual biomolecules in densely packed clusters. Nat. Nonotechnol. 11, 798–807 (2016)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2017

Authors and Affiliations

  • Takahiro Nishimura
    • 1
    Email author
  • Hitoshi Kimura
    • 1
  • Yusuke Ogura
    • 1
  • Jun Tanida
    • 1
  1. 1.Graduate School of Information Science and TechnologyOsakaJapan

Personalised recommendations