Skip to main content
Log in

Optimization design of chirp managed lasers by integral layer-peeling method

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

The chirp managed laser (CML) mainly includes a directly modulated laser followed by an optical spectrum reshaper (OSR) filter. In this paper, an integral layer-peeling method has been applied to synthesize the OSR filter with the desired reflection spectrum, which breaks the trade-off between the filter bandwidth and the filter slope steepness inherently existing in the FP etalon based filter, and hence greatly facilitates the optimization design of the OSR for a better transmission performance of a CML. Using this approach, we have, respectively, investigated the optimization design of the OSR filter in terms of the edge slope and the 3 dB bandwidth in the CML modulated at 10 and 25 Gb/s, through studying their transmission performances over the standard single-mode fiber. With the optimum design of OSR, the longest transmission distances at which the power penalty is 1 dB at a bit error rate of 10−12 are 135 and 18 km for the 10 and 25 Gb/s CML, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mahgerefteh, D., Matsui, Y., Zheng, X., McCallion, K.: Chirp managed laser and applications. IEEE J. Sel. Top. Quantum Electron. 16(5), 1126–1139 (2010). doi:10.1109/jstqe.2009.2037336

    Article  Google Scholar 

  2. Yu, J., Jia, Z., Huang, M.-F., Haris, M., Ji, P.N., Wang, T., Chang, G.-K.: Applications of 40-Gb/s chirp-managed laser in access and metro networks. J. Lightwave Technol. 27(3), 253–265 (2009). doi:10.1109/jlt.2008.2006064

    Article  ADS  Google Scholar 

  3. Mahgerefteh, D., Matsui, Y., Zheng, X., Chen, H., Zhou, J., Deutsch, M., Larosa, G., McCallion, K., Fan, Z.F., Tayebati, P., Yoffe, G., Zou, S., Emanuel, M., Rishton, S.A., Hong, X., Narayan, R., Pezeshki, B.: Tunable chirp managed laser. IEEE Photonics Technol. Lett. 20(2), 108–110 (2008). doi:10.1109/lpt.2007.912556

    Article  ADS  Google Scholar 

  4. Chandrasekhar, S., Gnauck, A.H., Buhl, L.L., Zheng, X., Mahgerefteh, D., Matsui, Y., Mccallion, K., Fan, Z.F., Tayebati, P.: Single channel transmission over 9280 km at 10-Gb/s using small form factor chirp managed laser generating RZ AMI modulation format. In: Optical Communication, 2005. ECOC 2005. 31st European Conference on 2005, vol. 26 pp. 21–22 (2005)

  5. Jia, W., Xu, J., Liu, Z., Tse, K.-H., Chan, C.-K.: Generation and transmission of 10-Gb/s RZ-DPSK signals using a directly modulated chirp-managed laser. IEEE Photonics Technol. Lett. 23(3), 173–175 (2011). doi:10.1109/lpt.2010.2092761

    Article  ADS  Google Scholar 

  6. Jia, W., Xu, J., Liu, Z., Chan, C.K., Chen, L.K.: Generation of 20 Gb/s RZ-DQPSK signal using a directly modulated chirp managed laser. In: Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference 2011, pp. 1–3 (2011)

  7. Shi, Y., Li, S., Zhou, Y., Lu, L., Li, L., Feng, Y., Chen, X.: Improved λ/4 phase-shifted DFB semiconductor laser with spatial hole burning compensation using grating chirp. Opt. Laser Technol. 44(8), 2443–2448 (2012)

    Article  ADS  Google Scholar 

  8. Zheng, J., Song, N., Zhang, Y., Shi, Y.: An equivalent-asymmetric coupling coefficient DFB Laser with high output efficiency and stable single longitudinal mode operation. Photonics J. IEEE 6(6), 1–9 (2014)

    Article  Google Scholar 

  9. Yousuf, A., Najeeb-Ud-Din, H.: Effect of gain compression above and below threshold on the chirp characteristics of 1.55 µm distributed feedback laser. Opt. Rev. 16(5), 1126–1139 (2016)

    Google Scholar 

  10. Matsui, Y., Mahgerefteh, D., Zheng, X., Liao, C., Fan, Z.F., Mccallion, K., Tayebati, P.: Chirp-managed directly modulated laser (CML). IEEE Photonics Technol. Lett. 18(2), 385–387 (2006)

    Article  ADS  Google Scholar 

  11. Tayebati, P., Mahgerefteh, D., Mccallion, K.: Chirp managed laser fiber optic system including an adaptive receiver. US Patent 7,376,352, 20 May 2008

  12. Mccallion, K., Tayebati, P.: Multi-ring resonator implementation of optical spectrum reshaper for chirp managed laser technology. US Patent 7,502,532, 10 Mar 2009

  13. Rosenthal, A., Horowitz, M.: Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings. IEEE J. Quantum Electron. 39(8), 1018–1026 (2003). doi:10.1109/jqe.2003.814365

    Article  ADS  Google Scholar 

  14. Segur, H.: Solitons and the inverse scattering transform. SIAM, Philadelphia (1981)

    MATH  Google Scholar 

  15. Feced, R., Zervas, M.N., Muriel, M.A.: An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings. IEEE J. Quantum Electron. 35(8), 1105–1115 (1999)

    Article  ADS  Google Scholar 

  16. Bruckstein, A.M., Levy, B.C., Kailath, T.: Differential methods in inverse scattering. Siam J. Appl. Math. 45(2), 312–335 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, L., Huang, W., Wang, J., Yang, G.: Improved layer peeling algorithm for strongly reflecting fiber gratings. Chin. Opt. Lett. 4(9), 505–507 (2006)

    ADS  Google Scholar 

  18. Kolossovski, K., Buryak, A.V., Sammut, R.A.: Optimised time-frequency domain layer-peeling algorithm to reconstruct fibre Bragg gratings. Electron. Lett. 40(17), 1046–1047 (2004)

    Article  Google Scholar 

  19. Rosenthal, A., Horowitz, M.: Reconstruction of a fiber Bragg grating from noisy reflection data. J. Opt. Soc. Am. A 22(1), 84–92 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  20. Doucet, S., Larochelle, S., Morin, M.: Reconfigurable dispersion equalizer based on phase-apodized fiber Bragg gratings. Lightwave Technol. J. 26(16), 2899–2908 (2008)

    Article  ADS  Google Scholar 

  21. Simard, A.D., Larochelle, S.: High performance narrow bandpass filters based on integrated Bragg gratings in silicon-on-insulator. In: Optical Fiber Communications Conference and Exhibition 2015, pp. 1–3 (2015)

  22. Kim, B.S., Chung, Y., Lee, J.S.: An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes. IEEE J. Quantum Electron. 36(7), 787–794 (2000)

    Article  ADS  Google Scholar 

  23. Frangos, P.V., Jaggard, D.L.: Inverse scattering: solution of coupled Gel’fand–Levitan–Marchenko integral equations using successive kernel approximations. IEEE Trans. Antennas Propag. 43(6), 547–552 (1995)

    Article  ADS  Google Scholar 

  24. Skaar, J., Wang, L., Erdogan, T.: On the synthesis of fiber Bragg gratings by layer peeling. IEEE J. Quantum Electron. 37(2), 165–173 (2001)

    Article  ADS  Google Scholar 

  25. Zhang, L.M., Yu, S.F., Nowell, M.C., Marcenac, D.D., Carroll, J.E., Plumb, R.G.S.: Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model. IEEE J. Quantum Electron. 30(6), 1389–1395 (1994). doi:10.1109/3.299461

    Article  ADS  Google Scholar 

  26. Agrawal, G.P.: Fiber-Optic Communication Systems, 3rd edn. Wiley, New York (2010)

    Book  Google Scholar 

  27. Albert, J., Theriault, S., Bilodeau, F., Johnson, D.C.: Minimization of phase errors in long fiber Bragg grating phase masks made using electron beam lithography. IEEE Photonics Technol. Lett. 8(10), 1334–1336 (1996)

    Article  ADS  Google Scholar 

  28. Sugitatsu, A., Kawano, H., Hatta, T., Kasahara, K.: A novel fabrication technique of long period fiber gratings using a holographic optical element. Opt. Rev. 8(4), 267–270 (2001)

    Article  Google Scholar 

  29. Dai, Y., Chen, X., Sun, J., Yao, Y.: Dispersion compensation based on sampled fiber Bragg gratings fabricated with reconstruction equivalent-chirp method. Photonics Technol. Lett. IEEE 18(8), 941–943 (2006)

    Article  ADS  Google Scholar 

  30. Shi, Y., Li, S., Chen, X., Li, L., Li, J., Zhang, T., Zheng, J., Zhang, Y., Tang, S., Hou, L.: High channel count and high precision channel spacing multi-wavelength laser array for future PICs. Sci. Rep. 4, 7377 (2013)

    Article  Google Scholar 

  31. Shi, Y., Chen, X., Zhou, Y., Li, S., Lu, L., Liu, R., Feng, Y.: Experimental demonstration of eight-wavelength distributed feedback semiconductor laser array using equivalent phase shift. Opt. Lett. 37(16), 3315–3317 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant 61405068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Zhu, Z., Chen, Y. et al. Optimization design of chirp managed lasers by integral layer-peeling method. Opt Rev 24, 572–578 (2017). https://doi.org/10.1007/s10043-017-0347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-017-0347-6

Keywords

Navigation