Skip to main content
Log in

Optical frequency comb generation based on three parallel Mach–Zehnder modulators with recirculating frequency shifting loop

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We theoretically and numerically study an approach for optical frequency comb (OFC) generation, by utilizing recirculating frequency shifting (RFS) loop based on three parallel Mach–Zehnder modulators (MZMs). Our results show that three parallel MZMs can generate a single-side-band (SSB) signal with 36 dB optical carrier suppression (OCS) ratio. Furthermore, the 60-tone OFC signal with 30 dB side-mode suppression ratio (SMSR) and 4 dB maximum power fluctuation is achieved, and 20 of the OFC signal possess the power fluctuation of less than 1 dB. Our approach provides a novel way of generating OFC with excellent SMSR and good power fluctuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Song, M., Company, V.T., Metcalf, A.J., Weiner, A.M.: Multitap microwave photonic filters with programmable phase response via optical frequency comb shaping. Opt. Lett. 37, 845–847 (2012)

    Article  ADS  Google Scholar 

  2. Schneider, G.J., Murakowski, J.A., Schuetz, C.A., Shi, S.Y., Prather, D.W.: Raiofrequency signal-generation system with over seven octaves of continuous tuning. Nat. Photon. 7, 118–122 (2013)

    Article  ADS  Google Scholar 

  3. Cundiff, S.T., Weiner, A.M.: Optical arbitrary waveform generation. Nat. Photon. 4, 760–766 (2010)

    Article  ADS  Google Scholar 

  4. Delfyett, P.J., Gee, S., Choi, M., Izadpanah, H., Lee, W., Ozharar, S., Quinlan, F., Yilmaz, T.: Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications. J. Lightw. Technol. 24, 2701–2719 (2006)

    Article  ADS  Google Scholar 

  5. Chen, C., Zhang, C., Zhang, W., Jin, W., Qiu, K.: Scalable and reconfigurable generation of falt optical comb for WDM-based next-generation broadband optical access networks. Opt. Commun. 321, 16–22 (2014)

    Article  ADS  Google Scholar 

  6. Gee, S., Quinlan, F., Ozharar, S., Delfyett, P.J.: Simultaneous optical comb frequency stabilization and super-mode noise suppression of harmonically mode-locked semiconductor ring laser using an intracavity etalon. IEEE Photon. Technol. Lett. 17, 199–201 (2005)

    Article  ADS  Google Scholar 

  7. Supradeepa, V.R., Weiner, A.M.: Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing. Opt. Lett. 37, 3066–3068 (2012)

    Article  ADS  Google Scholar 

  8. Wang, M.G., Yao, J.P.: Tunable optical frequency comb generation based on an optoelectronic oscillator. IEEE Photon. Technol. Lett. 25, 2035–2038 (2013)

    Article  ADS  Google Scholar 

  9. Li, W., Wang, W.T., Sun, W.H., Wang, L.X., Liu, J.G., Zhu, N.H.: Generation of flat optical frequency comb using a single polarization modulator and a brillouin-assisted power equalizer. IEEE. Photon. J. 6, 1–9 (2014)

    Google Scholar 

  10. Sakamoto, T., Kawanishi, T., Izutsu, M.: Widely wavelengthtunable ultra-flat frequency comb generation using conventional dual drive Mach–Zehnder modulator. Electron. Lett. 43, 1039–1040 (2007)

    Article  Google Scholar 

  11. Wu, R., Supradeepa, V., Long, C.M., Leaird, D.E., Weiner, A.M.: Generation of very flat optical frequency combs from continuous-wave lasers using cascaded in- tensity and phase modulators driven by tailored radio frequency wave forms. Opt. Lett. 35, 3234–3236 (2010)

    Article  ADS  Google Scholar 

  12. Dou, Y.J., Zhang, H.M., Yao, M.Y.: Improvement of flatnessof optical frequency comb based on nonlinear effect of intensitymodulator. Opt. Lett. 36, 2749–2751 (2011)

    Article  ADS  Google Scholar 

  13. Shang, L., Wen, A.J., Lin, G.B.: Optical frequency comb generation using two cascaded intensity modulators. J. Opt. 16, 1–5 (2014)

    Article  Google Scholar 

  14. Shang, L., Wen, A.J., Lin, G.B., Gao, Y.S.: A flat and broadband optical frequency comb with tunable bandwidth and frequency sapcing. Opt. Commun. 331, 262–266 (2014)

    Article  ADS  Google Scholar 

  15. Yan, J.J., Zhang, S.Z., Xia, Z.Y., Bai, M., Zheng, Z.: A tunable optical frequency comb generator using a single dual parallel Mach–Zehnder modulator. Optics Laser Tech. 72, 74–78 (2015)

    Article  ADS  Google Scholar 

  16. Shang, L., Li, Y.P., Ma, L., Chen, J.: A flexible and ultra-flat optical frequency comb generator using a parallel Mach–Zehnder modulator with a single DC bias. Opt. Commun. 356, 70–73 (2015)

    Article  ADS  Google Scholar 

  17. Wang, Q., Hou, L., Xing, Y.F., Zhou, B.K.: Ultr-flat optical frequency comb genrator using a single-driven dual-parallel Mach–Zehnder modulator. Opt. Lett. 39, 3050–3053 (2014)

    Article  ADS  Google Scholar 

  18. Li, J.P., Zhang, X.B., Li, Z.H.: Optical frequency comb generation by utilizing the three-branch waveguide interferometer-based single-sideband modulator with reciculating frequency shifting loop. Opt. Eng. 53, 122606-1–122606-5 (2014)

    ADS  Google Scholar 

  19. Tian, F., Zhang, X.G., Li, J.P., Li, L.X.: Generation of 50 stable frequency-locked optical carriers for Tb/s multicarrier optical transmission using a recirculating frequency shifter. J. Lightwave Technol. 29, 1085–1091 (2011)

    Article  ADS  Google Scholar 

  20. Lin, J.C., Xi, L.X., Li, J.P., Li, J.R., Tang, X.F., Sun, L., Zhang, X.G.: High-quality frequency-locked optical frequency comb source for terbits optical communication system. Opt. Eng. 53, 122608-1–122608-10 (2014)

    ADS  Google Scholar 

  21. Lin, J.C., Xi, L.X., Li, J.R., Zhang, X.G., Zhang, X.: Low noise optical multi-carrier generation using optical-FIR filter for ASE noise suppression in re-circulating frequency shifter loop. Opt. Express 22, 7852–7864 (2014)

    Article  ADS  Google Scholar 

  22. Lei, C., Chen, H.W., Chen, M.H., Yang, S.G., Xie, S.Z.: Recirculating frequency shifting based wideband optical frequency comb genration by phase coherent control. IEEE. Photon. J. 7, 1–8 (2015)

    Article  Google Scholar 

  23. Zhang, J.W., Yu, J.J., Chi, N., Shao, Y.F., Wang, Y.Q.: Stable optical frequency-locked multicarriers generation by double recirculating frequency shifter loops for Tb/s communication. J. Lightw. Technol. 30, 3938–3945 (2012)

    Article  ADS  Google Scholar 

  24. Li, J.P., Li, Z.: Frequency-locked multicarrier generator based on a complementary frequency shifter with double recirculating frequencyshifting loops. Opt. Lett. 38, 359–361 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61231012, and National advanced Research Foundation of China under Grant 9140C530202150C53002 and 9140C530202140C53011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Zhao, S., Li, X. et al. Optical frequency comb generation based on three parallel Mach–Zehnder modulators with recirculating frequency shifting loop. Opt Rev 24, 533–539 (2017). https://doi.org/10.1007/s10043-017-0344-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-017-0344-9

Keywords

Navigation