Skip to main content
Log in

Calibration method for fringe projection profilometry with a binary defocusing technique

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A novel and simple calibration method for fringe projection profilometry with a binary defocusing technique is proposed and verified by experiments. This paper theoretically presents the principle that the one-to-one mapping servers as spatially invariant to environment in the phase domain when the projector is defocused. In terms of this principle, only two reference planes are introduced in the volume of projector defocusing (the measured volume) to specify one constraint, i.e., the emitted light beams, which are determined by the sub-pixel homologous pairs from the measured object to the reference planes in the phase domain. The nonlinear camera model is utilized to define the other constraint, i.e., the reflected light beams. Then, combining these two constraints will calibrate the 3D information of the measured object. It is pointed out that the proposed method does not require the calibration of the projector. Experiments demonstrate the performance of our proposed approach: the measurement accuracy can reach about 0.0916 mm with the binary defocusing technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang, Z.: Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques. Opt. Lasers Eng. 50(8), 1097–1106 (2012)

    Article  Google Scholar 

  2. Lei, S., Zhang, S.: Digital sinusoidal fringe generation: defocusing binary patterns VS focusing sinusoidal patterns. Opt. Lasers Eng. 48(5), 561–569 (2010)

    Article  MathSciNet  Google Scholar 

  3. Lei, S., Zhang, S.: Flexible 3-D shape measurement using projector defocusing. Opt. Lett. 34(20), 2080–3082 (2009)

    Article  Google Scholar 

  4. Zuo, C., Chen, Q., Feng, S., Feng, F., Gu, G., Sui, X.: Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing. Appl. Opt. 51(19), 4477–4490 (2012)

    Article  ADS  Google Scholar 

  5. Lohry, W., Zhang, S.: Genetic method to optimize binary dithering technique for high-quality fringe generation. Opt. Lett. 38(4), 540–542 (2013)

    Article  ADS  Google Scholar 

  6. Xu, Y., Ekstrand, L., Dai, J., Zhang, S.: Phase error compensation for three-dimensional shape measurement with projector defocusing. Appl. Opt. 50(17), 2572–2581 (2011)

    Article  ADS  Google Scholar 

  7. Huang, J., Wu, Q.: A new reconstruction method based on fringe projection of three-dimensional measuring system. Opt. Lasers Eng. 52(1), 115–122 (2014)

    Article  Google Scholar 

  8. Rosario, A., Giuseppe, D.L., Consolatina, L., Alfredo, P.: A new calibration procedure for 3-d shape measurement system based on phase-shifting projected fringe profilometry. IEEE Trans. Instrum. Meas. 58(5), 1291–1298 (2009)

    Article  Google Scholar 

  9. Falcao, G., Natalia, H., Joan, M.: Plane-based calibration of a projector-camera system. Vibot Master 9(1), 1–12 (2008)

    Google Scholar 

  10. Zhang, S., Huang, P.S.: Novel method for structured light system calibration. Opt. Eng. 45(8), 083601 (2006)

    Article  ADS  Google Scholar 

  11. Wei, Z., Cao, L., Zhang, G.: A novel 1D target-based calibration method with unknown orientation for structured light vision sensor. Opt. Laser Technol. 42(4), 570–574 (2010)

    Article  ADS  Google Scholar 

  12. Guo, H., He, H., Yu, Y., Chen, M.: Least-squares calibration method for fringe projection profilometry. Opt. Eng. 44(3), 033603 (2005)

    Article  ADS  Google Scholar 

  13. Du, H., Wang, Z.: Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system. Opt. Lett. 32(16), 2438–2440 (2007)

    Article  ADS  Google Scholar 

  14. Merner, L., Wang, Y., Zhang, S.: Accurate calibration for 3D shape measurement system using a binary defocusing technique. Opt. Lasers Eng. 51(5), 514–519 (2013)

    Article  Google Scholar 

  15. Li, B., Karpinsky, N., Zhang, S.: Novel calibration method for structured-light system with an out-of-focus projector. Appl. Opt. 53(16), 3415–3426 (2014)

    Article  ADS  Google Scholar 

  16. Li, X., Zhang, Z., Yang, C.: Reconstruction method for fringe projection profilometry based on light beams. Appl. Opt. 55(34), 9895–9906 (2016)

    Article  ADS  Google Scholar 

  17. Zhao, H., Wang, Z., Jiang, H., Xu, Y., Dong, C.: Calibration for stereo vision system based on phase matching and bundle adjustment algorithm. Opt. Lasers Eng. 68(1), 203–213 (2015)

    Article  Google Scholar 

  18. Dai, M., Yang, F., He, X.: Single-shot color fringe projection for three-dimensional shape measurement of objects with discontinuities. Appl. Opt. 51(12), 2062–2069 (2012)

    Article  ADS  Google Scholar 

  19. Zhang, Q., Su, X., Xiang, L., Sun, X.: 3-D shape measurement based on complementary Gray-code light. Opt. Lasers Eng. 50(4), 574–579 (2012)

    Article  Google Scholar 

  20. Heikkila, J., Olli, S.: A four-step camera calibration procedure with implicit image correction, pp. 1106–1112. Comput. Vis. Pattern Recog., San Juan (1997)

    Google Scholar 

  21. Li, B., Wang, Y., Dai, J., Lohry, W., Zhang, S.: Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques. Opt. Lasers Eng. 54(1), 236–246 (2014)

    Article  Google Scholar 

  22. Ellenberger, S.L.: Influence of defocus on measurements in microscope images. ASCI Dissertation Series. ASCI (2000)

  23. Wang, Y., Zhang, S.: Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing. Appl. Opt. 51(7), 861–872 (2012)

    Article  ADS  Google Scholar 

  24. Bouguet, J.Y.: Camera calibration toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc (2015)

  25. Zappa, E., Busca, G., Sala, P.: Innovative calibration technique for fringe projection based 3D scanner. Opt. Lasers Eng. 49(3), 331–340 (2011)

    Article  Google Scholar 

  26. Pribanić, T., Mrvoš, S., Salvi, J.: Efficient multiple phase shift patterns for dense 3D acquisition in structured light scanning. Image Vis. Comput. 28(8), 1255–1266 (2010)

    Article  Google Scholar 

  27. Huang, Z., Xi, J., Yu, Y., Guo, Q., Song, L.: Improved geometrical model of fringe projection profilometry. Opt. Express 22(26), 32220–32232 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijiang Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Gong, M., Zhang, Z. et al. Calibration method for fringe projection profilometry with a binary defocusing technique. Opt Rev 24, 495–504 (2017). https://doi.org/10.1007/s10043-017-0340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-017-0340-0

Keywords

Navigation