Advertisement

Optical Review

, Volume 24, Issue 3, pp 398–405 | Cite as

Super-resolution by annular pupil inserted scattered light fluorescence microscopes

Regular Paper
  • 179 Downloads

Abstract

Scattered light fluorescence (SLF) microscopy has been developed to take images through scattering media with subwavelength resolution. Here, we investigate the effect of an annular pupil on SLF microscopes via theory and simulations. As opposite to subwavelength resolution achieved by the conventional SLF microscopes, super-resolution can be achieved by annular pupil inserted scattered light fluorescence (API-SLF) microscopes. In fact, the resolution of an API-SLF microscope is usually relevant to one of its component, the scattering medium. By showing the average resolution of API-SLF microscopes that composed of different scattering media is about 0.4 times of the incident wavelength, we demonstrate that an API-SLF microscope with appropriate scattering medium is able to beat the diffraction limit.

Keywords

Scattering media Imaging Super-resolution Diffraction theory Statistics 

References

  1. 1.
    Fukuda, H., Terasawa, T., Okazaki, S.: Spatial filtering for depth of focus and resolution enhancement in optical lithography. J. Vac. Sci. Technol. B. 9, 3113 (1991)CrossRefGoogle Scholar
  2. 2.
    Drig, U., Pohl, D.W., Rohner, F.: Near field optical scanning microscopy. J. Appl. Phys. 59, 3318 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    Courjon, D., Bainier, C.: Near field microscopy and near field optics. Rep. Prog. Phys. 57, 989 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    Huang, F.M., Chen, Y., de Abajo, F.J.G., Zheludev, N.I.: Optical super-resolution through super-oscillations. J. Opt. A. Pure Appl. Opt. 9, S285 (2007)CrossRefGoogle Scholar
  5. 5.
    Paddock, S.W.: Confocal laser scanning microscopy. Biotechniques 27, 992 (1999)Google Scholar
  6. 6.
    Hell, Stefan W., Wichmann, Jan: Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    De Boer, J.F.: Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 22, 934 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Bina, M., et al.: Backscattering differential ghost imaging in turbid media. Phys. Rev. Lett. 110, 83901 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Wang, L., et al.: Kerr-Fourier imaging of hidden objects in thick turbid media. Opt. Lett. 18, 241–243 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    Tziraki, M., et al.: Photorefractive holography for imaging through turbid media using low coherence light. Appl. Phys. B. 70, 151 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Schmitt, J.M., Knttel, A., Yadlowsky, M.: Confocal microscopy in turbid media. JOSA A 11, 2226 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    Yodh, A., Chance, B.: Spectroscopy and imaging with diffusing light. Phys. Today 48, 34 (1995)CrossRefGoogle Scholar
  13. 13.
    Liu, F., Yoo, K.M., Alfano, R.R.: Transmitted photon intensity through biological tissues within various time windows. Opt. Lett. 19, 740 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    Denk, W., Piston, D.W., Webb, W.W.: Two-photon molecular excitation in laser-scanning microscopy. Handbook of biological confocal microscopy, p. 445. Springer, Berlin (1995)Google Scholar
  15. 15.
    Wang, L., Jacques, S.L., Zhao, X.: Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media. Opt. Lett. 20, 629 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    Vellekoop, I.M., Aegerter, C.M.: Scattered light fluorescence microscopy: imaging through turbid layers. Opt. Lett. 35, 1245 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Park, J.H., Park, C., Yu, H.S., et al.: Subwavelength light focusing using random nanoparticles. Nat. Photonics 7, 454–458 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Thompson, J.V., Hokr, B.H., Yakovlev, V.V.: Optimization of focusing through scattering media using the continuous sequential algorithm. J. Mod. Opt. 63, 80 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Conkey, D.B., Brown, A.N., Caravaca-Aguirre, A.M., et al.: Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Expr. 20, 4840–4849 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Zhou, Y., Li, X.: Optimization of iterative algorithms for focusing light through scattering media. IEEE Photonic J 9, 1–10 (2017)Google Scholar
  21. 21.
    Sommerfeld, A.: Optics, p. 199. Academic Press, Cambridge (1954)Google Scholar
  22. 22.
    Lord, R.: : XXXVII. On the passage of waves through apertures in Plane screens, and allied problems. Lond Edinb Dublin Philos Mag J Sci 43, 259 (1897)CrossRefMATHGoogle Scholar
  23. 23.
    Lord, R.: XXXI. Investigations in optics, with special reference to the spectroscope. Lond Edinb Dublin Philos Mag J Sci 8, 261 (1879)CrossRefGoogle Scholar
  24. 24.
    Born, M., Wolf, E.: Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, p. 371. Cambridge University Press, Cambridge (2000)Google Scholar
  25. 25.
    Shapiro, B.: Large intensity fluctuations for wave propagation in random media. Phys. Rev. Lett. 57, 2168 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    Pnini, R., Shapiro, B.: Fluctuations in transmission of waves through disordered slabs. Phys. Rev. B. 39, 6986 (1989)ADSCrossRefGoogle Scholar
  27. 27.
    Yu, H., Park, J., Lee, K.R., et al.: Recent advances in wavefront shaping techniques for biomedical applications. Curr. Appl. Phys. 15, 632–641 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Bertolotti, J., van Putten, E.G., et al.: Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Yang, X., Pu, Y., Psaltis, D.: Imaging blood cells through scattering biological tissue using speckle scanning microscopy. Opt. Express 22, 3405–3413 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Katz, O., Heidmann, P., Fink, M., Gigan, S.: Non-invasive real-time imaging through scattering layers and around corners via speckle correlations. Nat. Photonics 8, 784–790 (2014)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2017

Authors and Affiliations

  1. 1.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Department of Electrical and Computer EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations